自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 【2022-2-10】图神经网络

图神经网络(GraphNeuralNetwork,GNN)是近年来出现的一种利用深度学习直接对图结构数据进行学习的框架,其优异的性能引起了学者高度的关注和深入的探索.通过在图中的节点和 边上制定一定的策略,GNN 将图结构数据转化为规范而标准的表示,并输入到多种不同的神经网络中进行训练,在节点分类、边信息传播和图聚类等任务上取得优良的效果.与其他图学习算法相比较,GNN能够学习到图结构数据中的节点以及边的内在规律和更加深层次的语义特征。由于具有对图结构数据强大的非线性拟合能力,因此 在不同领域的图相关问题上

2022-02-10 23:10:16 409

原创 【2022-2-8】视觉问答

随着计算机视觉和自然语言处理技术的飞速发展,跨模态任务已经受到了两个领域的广泛关注,例如图像描述(Image Captioning)、图像检索(Image Retrieval)、视觉问答(Visual Question Answering)等任务。视觉问答任务是给定一张图片和一个与图片相关的问题,视觉问答模型来预测答案。视觉问答有很广泛的应用场景,例如早期教育、帮助盲人获取外部信息等。与其他跨模态任务相比,视觉问答是一个更具挑战性的任务,因为它需要对图像信息和文本信息有更细粒度的语意理解,并且还需要视觉

2022-02-08 20:04:32 2461

原创 【2022-2-6】AlphaStar

专家数据充分地用在了强化学习的各个过程中,有效降低了问题的复杂度。Adversarial + population-based training 两种技术的综合使用,产生了较为鲁棒的策略;深度学习各领域近期的多项突破性研究在AlphaStar架构得到了充分整合应用,使得其学习算法到网络结构都有足够的能力来处理星际这样的复杂表征与决策问...

2022-02-06 23:46:40 250

原创 【2022-2-5】textrnn

RNN的几个策略:1.直接使用RNN的最后一个单元输出向量作为文本特征2.使用双向RNN的两个方向输出向量的连接(concatenate)或均值作为文本特征3.将所有RNN单元的输出向量的均值pooling或者max-pooling作为文本特征...

2022-02-05 23:51:46 487

原创 【2022-2-4】gluoncv

GluonCV1 简介GluonCV提供了计算机视觉领域最先进的(SOTA)深度学习算法的实现。它旨在帮助工程师,研究人员和学生快速制作产品原型,验证新想法并学习计算机视觉。2 GluonCV特点复制最新论文中报道的SOTA结果的训练脚本大量预训练模型精心设计的API和易于理解的实现社区支持...

2022-02-04 23:26:39 1944

原创 【2022-2-3】PHP

PHP(PHP: Hypertext Preprocessor)即“超文本预处理器”,是在服务器端执行的脚本语言,尤其适用于Web开发并可嵌入HTML中。PHP语法学习了C语言,吸纳Java和Perl多个语言的特色发展出自己的特色语法,并根据它们的长项持续改进提升自己,例如java的面向对象编程,该语言当初创建的主要目标是让开发人员快速编写出优质的web网站。PHP同时支持面向对象和面向过程的开发,使用上非常灵活。经过二十多年的发展,随着php-cli相关组件的快速发展和完善,PHP已经可以应用在 TCP/

2022-02-03 22:46:59 3444

原创 【2022-2-1】clip

OpenAI 的 CLIP 模型在匹配图像与文本类别方面非常强大,但原始 CLIP 模型是在 4 亿多个图像 - 文本对上训练的,耗费了相当大的算力。来自 PicCollage 公司的研究者最近进行了缩小 CLIP 模型尺寸的研究,并取得了出色的效果。...

2022-02-01 23:56:17 463

原创 【2022-1-31】三维重建

三维重建的英文术语名称是3D Reconstruction.三维重建是指对三维物体建立适合计算机表示和处理的数学模型,是在计算机环境下对其进行处理、操作和分析其性质的基础,也是在计算机中建立表达客观世界的虚拟现实的关键技术。在计算机视觉中, 三维重建是指根据单视图或者多视图的图像重建三维信息的过程.由于单视频的信息不完全,因此三维重建需要利用经验知识. 而多视图的三维重建(类似人的双目定位)相对比较容易, 其方法是先对摄像机进行标定, 即计算出摄像机的图象坐标系与世界坐标系的关系.然后利用多个二维图象中

2022-01-31 23:25:45 328 1

原创 【2022-1-30】cuda

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA™架构编写程序,所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。...

2022-01-30 22:48:54 614

原创 【2022-1-29】AlphaFold2

AlphaFold 2,是DeepMind公司的一个人工智能程序。2020年11月30日,该人工智能程序在蛋白质结构预测大赛CASP 14中,对大部分蛋白质结构的预测与真实结构只差一个原子的宽度,达到了人类利用冷冻电子显微镜等复杂仪器观察预测的水平,这是蛋白质结构预测史无前例的巨大进步。这一重大成果虽然没有引起媒体和广大民众的关注,但生物领域的科学家反应强烈。...

2022-01-29 23:11:49 662

原创 【2022-1-28】RPA

机器人流程自动化(RPA)系统是一种应用程序,它通过模仿最终用户在电脑的手动操作方式,提供了另一种方式来使最终用户手动操作流程自动化。在传统的工作流自动化技术工具中,会由程序员产生自动化任务的动作列表,并且会用内部的应用程序接口或是专用的脚本语言作为和后台系统之间的界面。机器人流程自动化会监视使用者在应用软件中图形用户界面(GUI)所进行的工作,并且直接在GUI上自动重复这些工作。因此可以减少产品自动化的阻碍,因此有些软件可能没有这类用途的API。机器人流程自动化工具在技术上类似图形用户界面测试工具

2022-01-28 22:09:00 90

原创 【2022-1-27】ctp

CTP的相关概念➢Core Transaction Platform,B/S应用系统核心交易开发和运行平台➢实现了一个以一系列的松散结合的组件组成的结构模型。通过对业务系统进行抽象,提取相同或相似的处理模式构造出公用组件(服务或交易步骤),以便在开发新应用时重用。➢是参数化的系统,系统的各项配置定义通过XML语言进行描述。➢多渠道整合应用解决方案(B/S应用技术体系一体化)...

2022-01-27 22:35:40 250

原创 【2022-1-26】halcon

HALCON是德国MVtec公司开发的一套完善的标准的机器视觉算法包,拥有应用广泛的机器视觉集成开发环境。它节约了产品成本,缩短了软件开发周期——HALCON灵活的架构便于机器视觉,医学图像和图像分析应用的快速开发。在欧洲以及日本的工业界已经是公认具有最佳效能的Machine Vision软件。HALCON源自学术界,它有别于市面一般的商用软件包。事实上,这是一套image processing library,由一千多个各自独立的函数,以及底层的数据管理核心构成。其中包含了各类滤波,色彩以及几何,数学

2022-01-26 22:08:51 205

原创 【2022-1-25】飞桨

飞桨深度学习平台工具组件,包括 PaddleHub 迁移学习、PARL 强化学习、PALM 多任务学习、PaddleFL 联邦学习、PGL 图神经网络、EDL 弹性深度学习计算、AutoDL 自动化深度学习、VisualDL 训练可视化工具等,旨在推动前沿深度学习技术的产业化落地,满足多样的产业需求。飞桨的预训练模型库,目前主要覆盖自然语言处理和计算机视觉两个方向,包含图像分类、目标检测、词法分析、语义模型、情感分析、语言模型、视频分类、图像生成、图像分割等 70 多个技术领先的而且经过长期的产业实践验

2022-01-25 23:55:02 2368

原创 【2022-1-24】docker

Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。...

2022-01-24 22:24:42 545

原创 【2022-1-23】Autogluon

Autogluon支持易于使用和扩展的automl,专注于深入学习和涵盖图像、文本或表格数据的实际应用。Autogloon适用于机器学习初学者和专家,使他们能够:用几行代码为你的数据构建一个深度学习原型使用自动超参数微调、模型选择/结构搜索和数据处理;你不需要专业知识,以自动使用SOTA深入学习方法;轻松推广现有的自定义模型和数据管道,或根据用例自定义 autogluon。...

2022-01-23 23:43:50 693

原创 【2022-1-22】鲁棒性

鲁棒是Robust的音译,也就是健壮和强壮的意思。它也是在异常和危险情况下系统生存的能力。比如说,计算机软件在输入错误、磁盘故障、网络过载或有意攻击情况下,能否不死机、不崩溃,就是该软件的鲁棒性。所谓“鲁棒性”,也是指控制系统在一定(结构,大小)的参数摄动下,维持其它某些性能的特性。根据对性能的不同定义,可分为稳定鲁棒性和性能鲁棒性。以闭环系统的鲁棒性作为目标设计得到的固定控制器称为鲁棒控制器...

2022-01-22 23:31:21 1559

原创 【2022-1-21】Batchnorm

Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。首先计算均值和方差,然后归一化,然后缩放和平移

2022-01-21 23:48:12 1293

原创 【2022-1-20】baseline paper

一方面目前文本分类技术主要考虑词或词的组合;另一方面,研究表明,卷积神经网络在从原始信号中抽取信息的方面,非常有用。在这篇论文中,作者将字符级的文本当做原始信号,并且使用一维的卷积神经网络来处理它。研究表明,单词嵌入表示可以直接用于卷积神经网络,而无需考虑语言的语法或语义结构。https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf...

2022-01-20 23:30:52 431

原创 【2022-1-19】动态规划

动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果...

2022-01-19 23:36:09 129

原创 【2022-1-18】GAN

生成式对抗网络(GAN, Generative Adversarial Networks )是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的方法之一。模型通过框架中(至少)两个模块:生成模型(Generative Model)和判别模型(Discriminative Model)的互相博弈学习产生相当好的输出。原始 GAN 理论中,并不要求 G 和 D 都是神经网络,只需要是能拟合相应生成和判别的函数即可。但实用中一般均使用深度神经网络作为 G 和 D 。一个优秀的GAN应用需要有良好的训练方法,

2022-01-18 23:19:39 793

原创 【2022-1-17】Cartographer

Cartographer是Google推出的一套基于图优化的激光SLAM算法,它同时支持2D和3D激光SLAM,可以跨平台使用,支持Lidar、IMU、Odemetry、GPS、Landmark等多种传感器配置。是目前落地应用最广泛的激光SLAM算法之一。...

2022-01-17 21:35:15 642

原创 【2022-1-16】SGM

半全局匹配(SGM)是一种被广泛使用的、高效的立体匹配算法。他适用于纹理丰富的场景。但是由于其平行平面光滑假设,在没有纹理的倾斜表面上,经常会导致失败。为了解决这一个问题,作者对SGM算法进行了简单的拓展,提出了SGM-P 算法,算法利用了预先计算的表面方向作为先验信息。这种先验信息在不同的二维图片和三维空间场景中都广泛存在,并且可以通过多种方法将其提取出来。...

2022-01-16 23:39:49 531

原创 【2022-1-15】决策树

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。决策树是一种树形结构,其中每个内部节点表示一个属性上

2022-01-15 23:58:01 74

原创 【2022-1-14】Barbara Oakley

1 专注思维和发散思维2 结构安排3专注思维和发散思维-画家达利也在运用4 什么是学习5 拖延症简介6 实践记忆永存7 记忆简介8 睡眠在学习中的重要性9 特伦斯·谢诺沃斯基博士访谈10MaryAnna特别提示11 关于学习语言的采访12 关于创造力的采访13写作教练Daphne访谈...

2022-01-14 23:49:09 99

原创 【2022-1-14】NLP NOTE

2022-01-13 23:05:27 178

原创 【2022-1-11】NLP

自然语言处理( Natural Language Processing, NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。自然语言处理是一门融语言学、计算机科学、数学于一体的科学。因此,这一领域的研究将涉及自然语言,即人们日常使用的语言,所以它与语言学的研究有着密切的联系,但又有重要的区别。自然语言处理并不是一般地研究自然语言,而在于研制能有效地实现自然语言通信的计算机系统,特别是其中的软件系统。因而它是计算机科学的一部分。自然语言

2022-01-11 23:34:11 459

原创 【2022-1-10】随机森林

在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。 而 “Random Forests” 是他们的商标。 这个术语是1995年由贝尔实验室的Tin Kam Ho所提出的随机决策森林(random decision forests)而来的。这个方法则是结合 Breimans 的 “Bootstrap aggregating” 想法和 Ho 的"random subspace met

2022-01-10 23:39:22 415

原创 【2022-1-9】短时傅里叶变换

短时傅里叶变换(STFT,short-time Fourier transform,或 short-term Fourier transform)是和傅里叶变换相关的一种数学变换,用以确定时变信号其局部区域正弦波的频率与相位。它的思想是:选择一个时频局部化的窗函数,假定分析窗函数g(t)在一个短时间间隔内是平稳(伪平稳)的,移动窗函数,使f(t)g(t)在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。短时傅里叶变换使用一个固定的窗函数,窗函数一旦确定了以后,其形状就不再发生改变,短时傅里

2022-01-09 23:40:01 225

原创 【2022-1-8】AudioClip

AudioClip 接口是用于播放音频剪辑的简单抽象。多个 AudioClip 项能够同时播放,得到的声音混合在一起可产生合成声音。

2022-01-08 23:44:39 375

原创 【2022-1-7】AngularJS

类库 - 类库是一些函数的集合,它能帮助你写WEB应用。起主导作用的是你的代码,由你来决定何时使用类库。类库有:jQuery等框架 - 框架是一种特殊的、已经实现了的WEB应用,你只需要对它填充具体的业务逻辑。这里框架是起主导作用的,由它来根据具体的应用逻辑来调用你的代码。框架有:knockout、sproutcore等。AngularJS使用了不同的方法,它尝试去补足HTML本身在构建应用方面的缺陷。AngularJS通过使用我们称为指令(directives)的结构,让浏览器能够识别新的语法。例如:使

2022-01-07 23:21:39 98

原创 【2022-1-6】PANNS模型

panns-inference的Python项目详细描述潘恩斯地狱panns_推断提供了一个易于使用的Python接口,用于音频标记和声音事件检测。音频标记和声音事件检测模型是从PANNs(用于音频模式识别的大规模预训练音频神经网络)训练而来的:https://github.com/qiuqiangkong/audioset_tagging_cnn...

2022-01-06 23:29:11 2712

原创 【2022-1-5】梅尔频率

在声音处理领域中,梅尔频率倒谱(Mel-Frequency Cepstrum)是基于声音频率的非线性梅尔刻度(mel scale)的对数能量频谱的线性变换。梅尔频率倒谱系数 (Mel-Frequency Cepstral Coefficients,MFCCs)就是组成梅尔频率倒谱的系数。它衍生自音讯片段的倒频谱(cepstrum)。倒谱和梅尔频率倒谱的区别在于,梅尔频率倒谱的频带划分是在梅尔刻度上等距划分的,它比用于正常的对数倒频谱中的线性间隔的频带更能近似人类的听觉系统。 这样的非线性表示,可以在多个领

2022-01-05 23:44:50 1136

原创 【2022-1-4】logfbank

LogFBank算法logtBank特征提取算法类似于MFCC算法,都是基于Bank特征提取结果的基础上,再进行一些处理的。 不过lgiBank跟MFCC算法的主要区别在于,是否再进行离散余弦变换。logfBank特征提取算法在跟上述步骤一样得到fBank特征之后,直接做对数变换作为最终的结果,计算量相对MFCC较小,且特征的相关性较高,所以传统的语音识别技术常常使用MFCC算法。...

2022-01-04 23:31:14 1304

原创 【2022-1-3】cmvn 处理噪音背景音

cmvn:倒谱均值方差归一化提取声学特征以后,将声学特征从一个空间转变成另一个空间,使得在这个空间下更特征参数更符合某种概率分布,压缩了特征参数值域的动态范围,减少了训练和测试环境的不匹配等提升模型的鲁棒性,其实就是归化的操作。...

2022-01-03 23:42:03 794

原创 【2022-1-2】算法修炼

时间复杂度:look up o(n)insert o(1)delete o(1)append o(1)prepend o(1)leetcode:https://leetcode-cn.com/problems/reverse-linked-list/https://leetcode-cn.com/problems/reverse-nodes-in-k-group/

2022-01-02 23:54:39 127

原创 [2022-1-1]算法修炼01

个人算法训练记录

2022-01-01 23:26:05 243

原创 IDEA和GITEE

IDEA安装地址 IntelliJ IDEA: The Capable & Ergonomic Java IDE by JetBrains插件地址 IntelliJ IDEA 2021.2.3最新激活破解教程(可激活至2099年,亲测有效) - 异常教程gitee插件 IDEA 插件 - Gitee.com

2021-11-25 21:15:15 225

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除