生物监测与传染病预测:多方法探索与实践
1. 生物监测中的事件表示方法
1.1 语义网表示
语义网旨在扩展当前网络,对信息进行标记以实现自动化处理。在生物监测领域,信息获取途径多样,既可以通过文本挖掘技术从半结构化网页中提取,如 HealthMap 系统;也能通过 RSS 等结构化数据服务直接获取,许多网站如 EpiSpider、GDACS、RSOE 等都提供 RSS 数据。
不同社区在链接开放数据框架下开发了多种语义框架,这些框架类似于本体,通过对象和属性元素描述网页内容。数据以 RDF 三元组(Subject -> predicate -> object)的形式描述,可用于在 OWL 中描述完整的本体。例如,NBIS 关系可轻松映射到这种三元组框架,像“Host -> hasDisease -> Disease”。这种表示方法的优势在于 RDF 模式可发布并易于集成到其他系统,有相关工具用于创建和自动处理数据集,还能在非结构化文本中进行属性标记,便于对文本进行结构化数据查询。
1.2 实现方式
在 NBIS 2.0 应用中,事件模型采用关系数据库表示。具体操作流程如下:
1. 从互联网多个站点和新闻源收集开源文章,并流式传输给系统用户。
2. 对文章进行概念分类,判断其属于当前事件、历史回顾、企业产品公告或研究资助等类别。
3. 通过维基创建的用户界面展示文章列表,用户可浏览文章标题、来源和类别,选择感兴趣的文章。
4. 利用实体识别技术从选定文章中提取位置、病原体和疾病信息,预填充事件记录。
5. 借助维基扩展功能查看或编辑事件记录元素。
6.
超级会员免费看
订阅专栏 解锁全文
55

被折叠的 条评论
为什么被折叠?



