theano lstm代码(lstm.py)理解

本文主要对Theano库中的LSTM实现进行详细分析,包括整体框架理解、各函数的功能解析,帮助读者深入理解LSTM的工作流程。通过数据维度变化的示意图,配合代码阅读,便于更好地掌握LSTM的内部结构。同时提供了相关的参考资料链接,以供进一步学习。
摘要由CSDN通过智能技术生成

因为需要使用 lstm,lstm的代码,和官方教程解释得不是很详细,故对 theano lstm进行一些分析理解。

整体框架理解

这份代码实现的功能是利用RNN(LSTM)对IMDB每部电影的评论页面的评论进行情感分类。
这里的数据集比较特殊。一个包含所有句子的二重列表,列表的每个元素也为一个列表。
大小为2的tuple,train[0][n] 代表一个句子(对于词库索引的List),train[1][n]为该句子的情感分类标签。
举个简单的栗子,

评论语句处理
把整个过程中数据的维度的变化画出来,我觉得更利于理解程序的流程(结合代码看体验更佳)。
数据变化流程图

各个函数分析

def get_minibatches_idx(n, minibatch_size, shuffle=False):

返回值:zip(range(len(minibatches)), minibatches)

该函数得到了 shuffle 后的个数为 (n/batch_size)+1个batch,每个batch为minibatch_size的索引
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值