谱聚类

对于一组模式{x1x2, …, xn},谱聚类:

基于无向加权图G=(V,E),其中每个顶点vi对应一个xi,顶点vivj间的边有权值wij≥0

聚类问题就是要求G的连通子图

顶点vi的度为 di=wij求和

相应的,定义邻接矩阵W和度矩阵D(对角阵)

邻接矩阵W可根据模式间的相似度s(xi, xj)获得

无向图G=(V,E)的拉普拉斯矩阵(Laplacianmatrix) L=D-W

 

拉普拉斯矩阵有以下特性

–对任意n维向量f,有 f(T)Lf=1/2*[对其求和:wij*(fi-fj)平方]

L为半正定矩阵

L存在0特征值,且对应的特征向量所有元素均为1

理想情况下,若G能被分为若干个互不联通的连通子图,则可获得“完美”的聚类结果。

在上述情况下,L的0特征值个数即为类别数,且对于第k个0特征值,对应的特征向量e满足

 

1) ei=1,if xi属于Cluster i

2) ei=0,otherwise

尽管完美的聚类往往难以实现,我们仍可认为:

若L的某些特征向量对应的特征值较小,则该特征

向量给出了对聚类有用的信息

 

算法流程:

定义相似性度量s并计算相似性矩阵,设定聚类的类别数k

根据相似性矩阵S计算邻接矩阵W

计算拉普拉斯矩阵L

计算L的k个最小特征值对应的特征向量e1,…, ek

基于所求得的特征向量,定义一个k维空间,模式xi在该空间中表示为[e1i,…, eki]

利用任意现有的聚类算法,如k-means,在新空间中进行聚类。

 

谱聚类的本质实际就是先将模式隐射到一个新的空间,再以传统方式聚类

 

 

使用谱聚类须首先回答的一些问题:

给定相似度矩阵S,怎样获得邻接矩阵W?

s(xi, xj)小于某一阈值,令wij= s(xi, xj),否则为0

当xi, xj互为对方的k近邻时,令wij= s(xi, xj)

直接令wij= s(xi, xj),这时G成为一个全连通图

 

如何确定类别数目?

将所有特征值由小到大排序,若第k个特征值与第k+1个特征值差别较大,则取k为类别数

对于L,要计算对应k个最小特征值的特征向量,并不需要做完全的特征值分解,可以用一些经典的迭代法,比如Krylovsubspace方法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值