还没学明白

入坑新人,疯狂学习

FASA:Fast, Accurate, Size-aware Salient Object Detection 论文阅读

文章目录FASA: Fast, Accurate, Size-aware Salient Object Detection 论文阅读Abstract1.Introduction2.Related Work3.Our Method3.1 Spatial Center and Variance of ...

2019-04-22 10:01:10

阅读数 202

评论数 0

(系列笔记——收官)30.人工智能、机器学习和深度学习

文章目录人工智能、机器学习和深度学习人工智能的发展人工智能、机器学习和深度学习的关系什么是神经网络神经网络的两个要素神经网络的训练对人类神经系统的模拟已知和未知训练过程 人工智能、机器学习和深度学习 人工智能(Artificial Intelligence,AI) 人工智能的字面意义就已经解释了它...

2019-03-24 06:47:11

阅读数 76

评论数 0

(系列笔记)29.深度学习(下)

深度学习的愿景、问题、应用和资料 深度学习的愿景 深度学习的现实 机器学习和深度学习 深度学习的落地点 深度学习的局限 深度学习资料

2019-03-20 09:43:41

阅读数 1032

评论数 0

(系列笔记)28.深度学习(上)

几种深度学习网络 神经网络的历史沿革 深度学习(Deep Learning) 不同种类的深度学习网络

2019-03-20 09:40:53

阅读数 166

评论数 0

(系列笔记)27.主成分分析——PCA(下)

PCA——用 SVD 实现 PCA PCA 优化算法 PCA的优化算法目的是优化它的目标函数: 算法一,拉格朗日乘子法: 令: 然后对W求导,并令导函数为0可得: 这是一个标准的特征方程求解问题,只需要对协方差矩阵XXTXX^TXXT进行特征值分解,将求得的特征值排序:λ1≥λ2≥...≥λ...

2019-03-19 20:21:53

阅读数 25

评论数 0

(系列笔记)26.主成分分析——PCA(上)

PCA——利用数学工具提取主要特征 泛滥成灾的特征维度 降低数据维度 主成分分析(PCA)的原则 PCA 的优化目标

2019-03-19 20:08:30

阅读数 43

评论数 0

(系列笔记)25.GMM算法(下)

GMM——用 EM 算法求解 GMM 高斯分布 高斯混合模型(GMM) 用 EM 算法学习 GMM 的参数 GMM 实例

2019-03-18 21:43:11

阅读数 158

评论数 1

(系列笔记)24.GMM算法(上)

GMM——将“混”在一起的样本各归其源 个体 vs 集体 已知每个簇的原始分布 已知分布条件下的样本归属 学习概率密度函数参数 同分布的混合模型

2019-03-18 21:41:55

阅读数 41

评论数 1

(系列笔记)23.EM算法

EM算法——估计含有隐变量的概率模型的参数 含有隐变量的概率模型 EM算法的推导过程

2019-03-17 21:09:00

阅读数 72

评论数 0

(系列笔记)22.谱聚类

谱聚类——无需指定簇数量的聚类 无须事先指定簇数量的聚类 说到聚类,最常见的模型当然是 KMeans。不过如果使用 KMeans 的话,需要在算法运行前指定 k 的值——也就是要在训练前指定最后的结果被分为几簇。 现实中有相当多的聚类问题,无法事先指定簇的数量。KMeans 就无法完成这类任务。 ...

2019-03-17 21:04:29

阅读数 32

评论数 2

(系列笔记)21.KMeans聚类算法

KMeans——最简单的聚类算法 什么是聚会(Clustering) 聚类并非一种机器学习专有的模型或算法,而是一种统计分析技术,在许多领域得到广泛应用。 广义而言,聚类就是通过对样本静态特征的分析,把相似的对象,分成不同子集(后面我们将聚类分出的子集称为“簇”),被分到同一个子集中的样本对象都具...

2019-03-16 23:55:07

阅读数 28

评论数 0

(系列笔记)20.由KNN引出KMeans

从有监督到无监督:由 KNN 引出 KMeans 从有监督学习到无监督学习 有监督学习和无监督学习,是机器学习的两个大类别。我们之前讲的都是有监督学习,毕竟有监督学习现阶段还是机器学习在实际应用中的主流。 有监督学习(Supervised Learning) 所谓有监督学习,即: 训练数据同时拥...

2019-03-16 23:12:52

阅读数 15

评论数 0

(系列笔记)19.CRF(下)

CRF——三个基本问题 线性链CRF的形式化表示 CRF的三个基本问题

2019-03-15 16:30:37

阅读数 47

评论数 0

(系列笔记)18.CRF(上)

CRF——概率无向图模型到线性链条件随机场 概率无向图 条件随机场(Conditional Random Field,CRF) 线性链CRF HMM和线性链CRF

2019-03-15 16:29:17

阅读数 29

评论数 0

(系列笔记)17.HMM系列(3)

HMM——三个基本问题的计算 1、概率计算问题 直接计算 前向-后向算法 2、预测算法 直接求解 维特比算法 3、学习算法 有监督学习 无监督学习 4、HMM实例 code & result ...

2019-03-14 23:17:10

阅读数 21

评论数 0

(系列笔记)16.HMM系列(2)

HMM——三个基本问题 三个基本问题 概率计算问题 预测问题 学习问题 举例子 背景 问题分析 求解三个基本问题的现实意义

2019-03-14 23:14:15

阅读数 16

评论数 1

(系列笔记)15.HMM系列(1)

HMM——定义和假设 概念讲解 概率模型(Probabilistic Model) 所谓概率模型,顾名思义,就是将学习任务归结于计算变量的概率分布的模型。 概率模型非常重要。在生活中,我们经常会根据一些已经观察到的现象来推测和估计未知的东西——这种需求,恰恰是概率模型的推断(Inference)行...

2019-03-14 23:11:21

阅读数 21

评论数 1

(系列笔记)14.SVM和SVR

直观认识SVM和SVR 1、SVM实例 整理一下,前面讲了线性可分 SVM、线性 SVM、非线性 SVM 和核函数,这次笔记就通过一些例子来直观理解一下,特征采用的是一维特征。 线性可分SVM import numpy as np import matplotlib.pyplot ...

2019-03-13 22:38:03

阅读数 75

评论数 0

(系列笔记)13.SVR模型

SVR——一种“宽容的回归模型” 严格的线性回归 线性回归:在向量空间里用线性函数去拟合样本。该模型以所有样本实际位置到该线性函数的综合距离为损失,通过最小化损失来求取线性函数的参数。对于线性回归而言,一个样本只要不算正好落在作为模型的线性函数上,就要被计算损失。 宽容的支持向量回归(SVR) 介...

2019-03-13 22:13:01

阅读数 487

评论数 1

(系列笔记)12.SVM系列(5)

SVM——非线性SVM和核函数 非线性分类问题 非线性SVM 核函数的性质 核函数的种类 构建自己的核函数 数据归一化

2019-03-12 21:17:23

阅读数 54

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭