自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 YOLOv5 实现目标检测(训练自己的数据集实现猫猫识别)

一、概要2020年6月10日,Ultralytics在github上正式发布了YOLOv5。YOLO系列可以说是单机目标检测框架中的潮流前线了,由于YOLOv5是在PyTorch中实现的,它受益于成熟的PyTorch生态系统,支持更简单,部署更容易,相对于YOLOv4,YOLOv5具有以下优点:速度更快。在YOLOv5 Colab notebook上,运行TeslaP100,我们看到每张图像的推理时间仅需0.007秒,这意味着每秒140帧(FPS),速度是YOLOv4的2倍还多。精度更高。在Rob

2020-07-25 13:10:35 152606 387

原创 基于opencv的裂缝宽度检测算法(计算轮廓最大内切圆算法)

这里依然是应用在图像分割的场景,在对路面病害中的裂缝进行检测时,通过UNet++图像分割模型我们可以得到裂缝的标注图像,如下图所示。针对裂缝的图像分割图像,我们仍需进一步的进行图像处理操作,计算裂缝的宽度。这里我采用的是膨胀圆算法,通过opencv计算裂缝轮廓中最大内切圆,以此来求得最大的裂缝宽度。代码如下:import cv2import mathimport randomimport numpy as npfrom numpy.ma import cos, sinimport matpl

2021-09-07 16:36:53 15490 41

原创 PyTorch图像分割模型——多类别图像分割数据集制作

上一篇文章中,主要介绍了使用segmentation_models_pytorch库进行UNet++模型训练,我们使用的数据集是已经标注好的CamVid数据集,但在实际应用中,我们需要标注自己的多分类图像分割数据集,这篇文章中,就重点介绍下怎么创建自己的图像分割数据集。首先需强调的是在这里我们用的数据集都是png格式的,生成的标注图像也都是png格式的,因为png图像可以做到无损压缩,能在保证最不失真的情况下尽可能压缩图像文件的大小,而且png用来存储灰度图像时,灰度图像的深度可多到16位,存储彩色图像时

2021-08-10 16:11:11 10826 3

原创 PyTorch图像分割模型——segmentation_models_pytorch库的使用

一、概要segmentation_models_pytorch是一个基于PyTorch的图像分割神经网络这个新集合由俄罗斯的程序员小哥Pavel Yakubovskiy一手打造,对于图像分割而言简直就是神器般的存在。github地址:https://github.com/qubvel/segmentation_models.pytorch该库的主要功能有:高级API(只需两行即可创建神经网络);用于二分类和多类分割的9种模型架构(包括传奇的Unet)(Unet、Unet++、MAnet、Lin

2021-08-10 01:39:19 40960 28

原创 YOLOv5图像识别显示中文标签

采用YOLOv5进行图像识别时,通常识别结果中的标签都是英文显示的,如下图所示:当然,无论是YOLO还是opencv,都是老外开发的,开发的过程中肯定不会考虑中文显示了,所以一直以来,在opencv-python中显示中文都有一些麻烦。那如何才能在YOLOv5图像识别中让标签变为中文呢?这里提供了一种修改YOLOv5源码方法可以参考。YOLOv5的使用在这里就不再阐述了,我们直接在YOLOv5程序中utils/utils.py(新版的是utils/general.py)文件下找到这一行代码:def p

2020-11-03 14:45:23 28382 41

原创 python制作深度学习数据集中的xml文件

在进行路面裂缝识别的项目中,我截取了9000多张只存在路面裂缝的100X100的图片,因为再进行一张一张的标注过于麻烦,所以我采用xml包利用python自动生成xml文件,作为yolov5识别的数据集。数据集中xml文件的具体内容可以参考:PASCAL VOC 数据集简介代码如下所示:from lxml.etree import Element, SubElement, tostringfrom xml.dom.minidom import parseStringimport osdef

2020-10-28 16:16:52 14690 1

原创 Python异常数据处理——箱型图分析

在数据分析中,利用箱型图的方法对异常数据进行过滤,是一种很快速、很有效的异常数据处理方法。箱形图(英文:Box plot),又称为盒须图、盒式图、盒状图或箱线图,是一种用作显示一组数据分散情况资料的统计图。因型状如箱子而得名。在各种领域也经常被使用,常见于品质管理,快速识别异常值。箱形图最大的优点就是不受异常值的影响,能够准确稳定地描绘出数据的离散分布情况,同时也利于数据的清洗。箱型图可以通过程序设置一个识别异常值的标准,即大于或小于箱型图设定的上下界的数值则识别为异常值,箱型图如下图所示:其中,

2020-08-05 15:35:51 28774 4

原创 HyperLPR 对图片和视频中车牌的识别

概要在上一篇文章中,主要介绍了HyperLPR开源车牌识别系统的配置和使用(链接:https://blog.csdn.net/oJiWuXuan/article/details/107332668),目前这个系统是我用过的开源车牌识别程序中最精准最稳定的,很多模糊的、角度倾斜的、恶劣天气下的车牌都能识别清楚,作为开源程序来说已经非常优秀了。但是上一篇文章主要是在虚拟环境中的配置及HyperLPR的简单使用,并没有涉及HyperLPR在实际场景中的应用,如对具体图片或者视频中车牌的识别并输出识别后的图片或视

2020-07-14 11:02:39 3586 6

原创 HyperLPR 开源车牌识别系统的入门使用

概要HyperLRP是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。github地址: https://github.com/zeusees/HyperLPRTODO支持多种车牌以及双层支持大角度车牌轻量级识别模型特性速度快 720p,单核 Intel 2.2G CPU (MaBook Pro 2015)平均识别时间低于100ms基于端到端的车

2020-07-14 10:35:12 11307 3

原创 使用XMAPP启动MySQL出现Error: MySQL shutdown unexpectedly 的解决办法

XMAPP是一款功能强大的Apache+MYSQL+PHP的服务器系统开发套件,通过XAMAPP我们可以非常方便的访问和管理MySQL、Apache等工具,目前最新的版本号为3.2.4.但是在使用XMAPP连接MySQL的时候,如果没有对接口进行设置,很有可能出现如下问题:16:30:36 [mysql] Error: MySQL shutdown unexpectedly.16:3...

2019-08-31 17:08:32 11336 2

原创 Django错误:django.db.utils.IntegrityError: (1048, "Column 'level' cannot be null")

在用Django注册superuser时出现了如下问题:django.db.utils.IntegrityError: (1048, "Column 'level' cannot be null")往上查询可以看到MySQLdb._exceptions.OperationalError: (1048, "Column 'level' cannot be null")说明在注册super...

2019-08-24 02:44:34 13844 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除