- 博客(6)
- 收藏
- 关注
转载 (Caffe,LeNet)网络训练流程(二)
版权声明:未经允许请勿用于商业用途,转载请注明出处:http://blog.csdn.net/mounty_fsc/目录(?)[+]程序入口Solver的创建SolverSolve函数SolverStep函数1 SolverTestAll函数2 NetForwardBackward函数3 SolverApplyUpdate函数训练完毕本文
2017-07-28 09:13:22 335
转载 牛顿法
(转自http://blog.csdn.net/njucp/article/details/50488869)“牛顿下降法和梯度下降法在机器学习和自适应滤波中的都很重要,本质上是为了寻找极值点的位置。但是收敛的速度不同。 本文中就两种方法来探究一下,哪种收敛方法速度快“牛顿下降法的递推公式: xn+1=xn−f′(xn)/f′′(xn)梯度下降算法的递推公式:
2017-07-26 15:27:03 278
转载 梯度下降法
(转自 http://www.cnblogs.com/ooon/p/4947688.html)深入梯度下降(Gradient Descent)算法 一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好。1 问题的引出对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示:手动求解目标是优化J(θ1
2017-07-26 15:24:32 440
原创 caffe+windows+vs2015 (无GPU)环境配置
自从2012年AlexNet在ImageNet上取得惊人成绩,DL重新回到大众的视野,成为学术界与产业界的宠儿。为了跟上这一波潮流,不禁舍身入坑。前段时间用开源的TinyCnn 复现了经典的LeNet模型,并在工业图像二分类测试中精度达到97%.现在希望能用更通用的框架试水更多DL网络模型,首先想到的就是UC Berkeley Yangqing Jia 的Caffe (Convolutio
2017-07-05 15:37:32 3150
转载 BP 反向传播
反向传播是使训练深度学习模型能够计算自如的关键算法。对于现代神经网络,相对于传统的执行,它可以使基于梯度下降的训练相对于传统的执行快一千万倍。这就是一个模型需要一个星期训练和花费20万年的区别。除了在深度学习中的使用,反向传播是许多其他领域的强大计算工具,从天气预报到分析数值稳定性 -它只是以不同的名字出现。实际上,该算法在不同领域已被重新发明了数十次。一般,作为独立的应用程序,名称是“反向模
2017-06-28 10:05:49 493
转载 图像的矩
图像的矩分类: C++ 数学 2012-12-24 18:06 2110人阅读 评论(0)收藏 举报 图像的矩一幅图像的矩,是通过一定的公式计算出来的。明白这个公式背后的原理,对于初学者来说,有一定的困难。这里,对图像的矩进行讲解。------------------------------若转载本文,请注明出自:www.opencvchin
2015-09-17 13:08:28 567
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人