最优化
Michael_AI
这个作者很懒,什么都没留下…
展开
-
梯度下降法
(转自 http://www.cnblogs.com/ooon/p/4947688.html) 深入梯度下降(Gradient Descent)算法 一直以来都以为自己对一些算法已经理解了,直到最近才发现,梯度下降都理解的不好。 1 问题的引出 对于上篇中讲到的线性回归,先化一个为一个特征θ1,θ0为偏置项,最后列出的误差函数如下图所示: 手动求解 目标是优化J(θ1转载 2017-07-26 15:24:32 · 439 阅读 · 0 评论 -
牛顿法
(转自http://blog.csdn.net/njucp/article/details/50488869) “牛顿下降法和梯度下降法在机器学习和自适应滤波中的都很重要,本质上是为了寻找极值点的位置。但是收敛的速度不同。 本文中就两种方法来探究一下,哪种收敛方法速度快“ 牛顿下降法的递推公式: xn+1=xn−f′(xn)/f′′(xn) 梯度下降算法的递推公式:转载 2017-07-26 15:27:03 · 277 阅读 · 0 评论