ETL和ELT有什么区别?终于有人讲明白了

一、引言

信息是现代企业的重要资源,是企业运用科学管理、决策分析的基础。目前,大多数企业花费大量的资金和时间来构建联机事务处理OLTP的业务系统和办公自动化系统(例如电信行业的各种运营支撑系统、购物网站系统),用来记录事务处理的各种相关数据。据统计,数据量每2~3年时间就会成倍增长,这些数据蕴含着巨大的商业价值,而企业所关注的通常只占在总数据量的2%~4%左右。因此,企业仍然没有最大化地利用已存在的数据资源,以致于浪费了更多的时间和资金,也失去制定关键商业决策的最佳契机。

在这个背景下,能够给企业所有级别的决策制定过程提供支持的所有类型数据的战略集合应运而生,他就是数据仓库。数据仓库的英文简写是Data Warehouse。数据仓库就是把OLTP系统产生的数据 整合到一起 发掘其中的商业价值和提供决策支持用。举个电信行业的例子 电信有系统每天会有客户投诉的信息、宽带群体性障碍、客户号码的停机恢复时间记录等等。这些数据都在各自的生产环境系统里面。他们每个月会把这些数据整合到一起处理加工到数据仓库里面形成报表 其中有一个功能是可以对哪些用户有离网销号的倾向做出大概的判断。这就是数据仓库的价值所在。

那么怎么把数据弄到数据仓库里去呢?其中用到的一个技术就是数据集成。

二、ETL和ELT的定义

数据集成是指将来自多个不同数据源的数据合并、整合和统一管理,以供分析、应用和决策使用的过程。 在数据集成过程中,ETL和ELT是数据仓库数据处理的两种不同方法。

  • ETL:将数据从源系统中抽取出来,经过转换处理后再加载到目标系统中。
  • ELT:将数据直接加载到目标系统中,然后在目标系统中进行转换和处理。
  • 区别:主要在于数据转换的时机和地点。ETL在数据加载之前进行转换,而ELT在数据加载之后进行转换。

三、ETL和ELT的侧重点

  1. 转换的顺序:ETL按照”Extract-Transform-Load”的顺序进行数据处理;ELT按照”Extract-Load-Transform”的顺序进行数据处理。
  2. 适用数据量场景:ETL适用于大规模数据集成和离线处理;ELT适用于较小规模和实时处理。
  3. 处理性能:ETL在转换过程中使用独立的服务器和批处理作业;ELT取决于目标系统的计算和存储能力。
  4. 转换操作差异: ETL可以对原始数据进行多种复杂的转换操作;ELT则依赖于目标系统的能力来实现转换。

四、选择适用于企业的处理方式

企业在选择ETL或ELT架构时,应综合考虑以下几个因素:

  1. 数据规模和复杂度:ETL架构适用于企业处理的数据规模较小或数据结构相对简单的情况。ELT主要用于大规模数据处理,适用于较为复杂的数据转换需求。
  2. 数据仓库的能力:ELT架构适用于企业已经建立了功能强大的数据仓库,利用数据仓库的功能来进行数据处理和转换,充分利用数据仓库的存储和计算能力。
  3. 实时性要求:ETL架构适合于企业需要实时数据处理和分析,ETL可以定期执行转换过程,以保持数据的最新状态。ELT可能需要较长的时间来加载大量数据,并且转换在加载后才进行,无法实时地提供最新的数据。
  4. 技术团队和资源:ETL架构相对传统,需要一定的ETL工具和开发经验。ELT更依赖于数据仓库平台的工具和功能,需要相关技术团队对数据仓库进行配置和操作。

五、ETL&ELT工具

现在来说说ETL和ELT工具,常用的有Kettle、FineDataLink、Informatica、 Datastage等等,其中FineDataLink是一款优秀的数据集成产品,支持ETL和ELT两种数据处理方式,操作简单,功能丰富,持多种格式和结构的异构数据源,具有以下突出的特点:

1.低代码:FineDataLink采用拖拉拽式的界面设计,可以通过低代码或无代码的方式快速构建数据流程,非技术用户也能轻松参与数据集成和处理。

2.易用性:采用流程化的ETL、ELT开发模式,用户能够快速上手。另外,FineDataLink的可视化操作界面简化了复杂的数据处理流程,使得数据转换、清洗和加载变得更加直观和容易管理。

3.高时效:具备数据实时同步能力,能够满足业务场景中对数据实时性的要求。基于CDC、binlog、LogMiner等技术,FineDataLink能够实现对数据源的实时增量同步,确保数据的时效性和准确性。

4.集成数据开发:同为帆软推出的产品,FineDataLink能够为FineReport和FineBl工具提供高质量的数据支持。搭配使用,可以很好地实现数据集成、处理、存储、分析和分享。

以下是使用FDL进行ETL和ELT的流程和步骤:

ETL(数据转换):用户希望将数据进行复杂处理后再同步至数据库中。

首先进入「数据转换」节点中,根据数据源类型进行数据输入。

使用「连接」「转换」等步骤对输入的数据进行处理。

ELT(数据同步):用户希望将大量的数据直接抽取同步写入数据库中,且想要同步的数据不需要非常复杂的处理。

通过「设置需要抽取的数据」>「设置需要写入的数据表」>「调整数据表字段」将数据直接抽取并写入数据库中。

FineDataLink是帆软推出的一款低代码/高效率的数据集成工具,提供ELT、ETL双核引擎,针对不同业务场景提供个性化解决方案,操作界面可视化、能够帮助企业快速转换同步数据,提高数据治理效率和质量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值