- 博客(1191)
- 资源 (44)
- 收藏
- 关注
原创 《向量数据库指南》——2023年7月国产向量数据库排行榜Top3:Milvus,Milvus Cloud,Tencent Cloud VectorDB
根据VectorDBBench数据,2023年7月的国产向量数据库排行榜中,排名前十的向量数据库分别是Milvus、Milvus Cloud、Tencent Cloud VectorDB、Zilliz Cloud、TensorDB、cVector、Om-iBASE、Vearch、Transwarp Hippo和Proxima。它提供了云端向量数据库服务,可以快速搭建云端向量数据库平台,支持多种数据源接入和多种查询语言,同时还提供了可视化界面和API接口,方便用户进行数据管理和查询。
2023-08-01 14:33:59 901
原创 LCHub:2023年无代码、低代码8大技术趋势
根据Gartner预测,到2025年,70%的应用程序将由低代码和无代码开发平台构建,其中 80%的应用程序由非IT工作者开发而成。没有编程背景的业务人员通过低代码、无代码可视化拖拽开发平台,也能创建安全、稳定、扩展性强的应用程序,对于组织的发展、运营来说至关重要,这将极大提升部门之间的协同效率、客户服务体验等。数据显示,26%的高管将“无代码、低代码开发平台”列为他们最重要的自动化投资,自 COVID-19 以来,这一投资增加了一倍多(从10%到26%)。低代码增强了应用程序生命周期的协作和迭代效率。
2023-01-22 09:00:00 2323
原创 《向量数据库指南》——BGE-M3:引领多模态RAG系统新风尚!
这个 Embedding 模型还能够输出两种不同的向量类型:稠密向量(Dense embedding)和稀疏向量(Sparse embedding)。如上所示,我们可以基于同一个输入获取两种不同类型的向量:稠密向量和稀疏向量。因为 Milvus 支持混合搜索(Hybrid Search),我们可以在向量搜索中同时使用这两种向量类型,从而增强 RAG 系统中检索到的上下文的准确性和质量。在下面的 RAG 应用中,我们将使用 BGE-M3 作为 Embedding 模型,将文本输入转换为向量。
2024-11-03 19:22:19 116
原创 《向量数据库指南》——RAG:让LLM告别幻觉,精准回答每一问!
然后,在 Milvus 这样的向量数据库中执行向量搜索(也称为向量相似性搜索或语义相似性搜索),以计算查询向量与向量数据库内上下文向量之间的相似性。我们首先获取用户的查询,然后在我们的数据库中找到最相关的上下文,这些上下文可以帮助 LLM 生成准确的回答。例如,如果我们向 LLM 提出涉及医学或法律等高度专业化的问题,并包含大量内部术语时,我们就有可能得到 LLM 随机生成的不准确的回答。在增强组件中,从检索组件检索到的相关上下文被合并在一起,与原始用户查询一起形成一致的 Prompt,传入 LLM。
2024-11-03 19:09:53 108
原创 《向量数据库指南》揭秘:LlamaIndex如何助力RAG应用开发
还有Haystack啊,它也是一个非常强大的RAG应用框架,提供了丰富的组件和工具来支持RAG应用的开发和管理。最后啊,当咱们需要查询或生成答案时,LlamaIndex就会根据用户的查询意图和上下文信息,在索引中检索最相关的信息,并将其发送到LLM中进行生成。但是呢,RAG应用的工作流程可是相当复杂的,需要咱们进行精心的编排和优化,才能确保它能够高效地运行并产生最佳的结果。嘿,各位小伙伴们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是那本被大家誉为行业宝典的《向量数据库指南》的作者。
2024-11-02 20:00:00 5
原创 《向量数据库指南》——RAG质量评估与监控,打造高效AI引擎
比如Arise啊,它就是一个非常流行的RAG评估和监控工具,提供了丰富的评估指标和可视化工具来支持咱们对RAG系统的评估和监控工作。这些工具啊,都有各自的特点和优势哦!它不仅提供了评估答案质量指标的工具,比如忠实度、相关性和上下文精确度这些关键指标,还支持生成合成测试数据集、监控生产中的RAG应用程序,以及与各种AI工具和平台(比如LangChain和LlamaIndex)的集成。它们就像是咱们RAG系统的贴身小助手,提供了各种评估和监控所需的指标和工具,让咱们能够定量地测量、监控和排错咱们的RAG系统。
2024-11-02 20:00:00 46
原创 《向量数据库指南》——解锁RAG新境界,让AI“能说会道”
而更高级的生产级RAG系统呢,还会包括一些额外的组件,比如数据挖掘、知识图谱构建等等,来进一步增强系统的质量和用户体验。在索引阶段啊,咱们的主要任务就是把各种来源的数据给“洗白白”,也就是进行数据清洗,把那些没用的、乱码的数据给剔除掉。这样一来啊,当咱们需要检索数据的时候,就可以通过计算向量之间的相似性来找到最相关的信息了。此外啊,还有一些项目从不同的角度来探索RAG的发展呢!嘿,各位小伙伴们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是那本被大家誉为行业宝典的《向量数据库指南》的作者。
2024-11-02 09:00:00 24
原创 《向量数据库指南》——解锁GenAI生态系统新纪元
首先啊,我得说,《向量数据库指南》这本书啊,那真的是向量数据库领域的宝典啊!举个例子啊,假设你要写一篇关于某个话题的文章啊,但是你又不知道该从哪里入手啊,这时候你就可以用RAG啊。你想想看啊,以前要制作一个创意广告啊,那得需要多少人啊、多少时间啊、多少成本啊!那么啊,说了这么多啊,你可能要问了啊:“王帅旭啊,那你觉得未来GenAI生态系统会怎么发展啊?相信我,它绝对不会让你失望的啊!所以啊,朋友们啊,如果你们想要在这个充满机遇和挑战的时代里脱颖而出啊,那就一定要好好学习和掌握向量数据库技术啊!
2024-11-01 20:00:00 58
原创 《向量数据库指南》——Mlivus Cloud:性能卓越,AI应用首选
而且啊,它的分布式架构还支持水平扩展,也就是说,当数据量增加时,我们只需要增加更多的节点就可以了,无需对现有的系统进行大规模的改造和升级。第一个场景啊,就是图像检索。哈喽,各位朋友们,我是你们的老朋友,大禹智库的向量数据库高级研究员王帅旭,也是那本备受好评的《向量数据库指南》的作者。今天,咱们来聊聊向量数据库领域的一个明星产品——Mlivus Cloud,看看它凭啥能在众多向量数据库中脱颖而出,成为AI应用的理想选择。最后啊,我想说的是啊,在这个数据爆炸的时代啊,选择一个好的向量数据库真的是太重要了!
2024-11-01 09:00:00 28
原创 解锁Mlivus Cloud高效秘籍!《向量数据库指南》带你深入探索
哈喽,大家好!我是你们的老朋友,大禹智库的向量数据库高级研究员王帅旭,也是那本备受好评的《向量数据库指南》的作者。今天,咱们来聊聊向量数据库的一个热门选手——Mlivus Cloud,特别是它那些让人眼前一亮的高级功能,保证让你大开眼界,收获满满!首先,咱们得说,《向量数据库指南》这本书啊,简直就是向量数据库领域的葵花宝典,不管是新手小白还是老鸟大神,都能从中找到自己想要的干货。想知道Mlivus Cloud怎么耍?书里可是应有尽有,实战案例、操作技巧,一应俱全。
2024-10-31 20:00:00 730
原创 《向量数据库指南》实战篇:打造高效RAG系统,助力AI升级
通过以上的步骤,你就可以使用Mlivus Cloud搭建一个基础的RAG系统了。当然,这只是一个起点,RAG系统还有很大的发展空间和潜力。未来,我们可以进一步探索如何将RAG系统与其他AI技术相结合,如知识图谱、强化学习等,以构建更加智能、高效的AI系统。最后,我想再次强调一下《向量数据库指南》的重要性。这本书不仅为你提供了向量数据库和RAG系统的理论知识,还提供了大量的实战案例和代码示例。如果你想要深入了解向量数据库和RAG系统的搭建方法,那么这本书绝对是你的首选。
2024-10-31 09:00:00 858
原创 《向量数据库指南》——Mlivus Cloud标量过滤,解锁海量数据处理新速度
想象一下,当你需要处理数十亿个向量时,Mlivus Cloud就像是一台拥有超算能力的筛选机,瞬间就能将符合条件的向量筛选出来,这种体验简直不要太爽!举个例子,如果你的数据集中有数十亿个向量,但你只对其中某个特定范围内的向量感兴趣,那么Mlivus Cloud就能在短时间内将搜索范围缩小到数千个甚至更少的向量上。不过,说到过滤功能,我们还得提一下标量索引。今天,咱们就来聊聊在使用Mlivus Cloud时,标量过滤这一强大功能是如何发挥作用的,以及如何通过这一功能实现更高效、更精准的向量数据处理。
2024-10-30 20:00:00 887
原创 Milvus: 轻松实现高效的向量相似性搜索
让我们利用 Cohere Embedding 技术进行相似性搜索。我们会将Who founded Wikipedia转换为 Embedding 向量,并用这个问题的向量在 Milvus 数据库中进行检索。
2024-10-30 09:00:00 29
原创 《向量数据库指南》——Milvus Cloud 过滤功能:轻松驾驭大规模数据搜索
减少搜索空间:与其他一些解决方案(例如 pgvector)不同,Milvus Cloud 在运行向量相似性搜索之前就进行元数据过滤,极大地减少了需要处理的向量数量。标量索引(可选):对于那些经常需要过滤的字段,Milvus Cloud 支持您为其创建标量索引。返回的文档标题中既不包含 "British Arab Commercial Bank",也不包含 "Calectasia"。在处理数百万或数十亿的向量时,过滤功能就不仅仅是一个锦上添花的功能——它是必不可少的功能。搜索包含特定词汇的文档。
2024-10-29 20:00:00 402
原创 《向量数据库指南》揭秘:如何快速上手 Milvus,实现高效向量搜索
本章节将介绍如何快速上手使用 Milvus,包括安装 Milvus SDK 或设置 Zilliz Cloud、连接至 Milvus、创建 Collection 等。
2024-10-29 09:00:00 71
原创 《向量数据库指南》——解锁Wikipedia文章向量的跨语言搜索秘籍
不过啊,对于咱们今天的用例来说,咱们主要关注的是英语文章,也就是其中的 4150 万个向量。比如啊,在《向量数据库指南》里啊,我就介绍了好几种常用的索引算法和它们的优缺点呢!没错,它就是通过 Cohere Embedding 模型将维基百科(Wikipedia)的文章转换成的 Embedding 向量,而且啊,这个数据集还能在 HuggingFace 上免费获取呢!嘿,各位向量数据库和AI应用的小伙伴们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是《向量数据库指南》的作者。
2024-10-28 20:00:00 163
原创 《向量数据库指南》——Milvus Cloud:解锁AI应用性能的新高度
虽然搜索速度会有轻微的下滑,但成本却会显著降低。想象一下,你的AI应用就像是一个正在参加马拉松的运动员,而Milvus Cloud就是那个随时为他提供能量补给和休息的驿站,确保他能够一路领跑,直到终点。嘿,朋友们,如果你们对向量数据库还一知半解,那可要竖起耳朵听我好好说道说道了,毕竟这《向量数据库指南》可是我的得意之作,里面干货满满,保证让你听完之后恍然大悟,哦不,是醍醐灌顶!Milvus Cloud,作为开源向量数据库界的佼佼者,它可是通过高性能和可扩展的向量相似性搜索,为AI应用提供了强有力的支持。
2024-10-28 12:00:42 1697
原创 OpenAI 文本 Embedding 模型与其他主流模型对比:深度剖析与实战指南
总的来说,OpenAI 文本 Embedding 模型与其他主流模型的对比为我们提供了更多的选择和可能性。通过了解这些模型的特点和性能,并结合实际场景进行选择和应用,我们可以更好地利用这些模型来处理和分析文本数据。展望未来,随着 NLP 技术的不断发展和进步,Embedding 模型将会迎来更多的创新和突破。我相信,在不久的将来,我们将看到更加高效、准确和智能的 Embedding 模型出现,为我们的生活和工作带来更多的便利和价值。
2024-10-27 19:00:00 724
原创 《向量数据库指南》——text-embedding-3-large与Mlivus Cloud打造语义搜索新纪元
首先,让我们来了解一下向量数据库和Mlivus Cloud的基本概念。向量数据库是一种专门用于存储和查询向量数据的数据库系统,与传统的关系型数据库不同,它利用向量间的相似度来计算数据之间的关联程度,从而实现了更为精准的语义搜索。而Mlivus Cloud,则是向量数据库领域的佼佼者,它提供了高效、稳定、可扩展的向量数据存储和查询服务,为企业和个人用户带来了极大的便利。在这里,我强烈推荐大家阅读我的著作《向量数据库指南》。
2024-10-27 09:00:00 876
原创 使用text-embedding-3-small生成向量并将向量插入Mlivus Cloud用于语义搜索的深度解析与实战操作
在正式进入实战之前,我们先来了解一下向量数据库和Mlivus Cloud的基本概念。向量数据库是一种专门用于存储和查询向量数据的数据库系统,它利用向量间的相似度来计算文本之间的语义关系,从而实现了高效的语义搜索。而Mlivus Cloud,作为业界领先的向量数据库云服务平台,提供了丰富的功能和强大的性能,为用户提供了便捷、高效的向量数据存储和查询服务。在这里,我不得不提一下我的著作《向量数据库指南》。这本书详细阐述了向量数据库的原理、架构、应用以及最佳实践,是每一位向量数据库从业者不可或缺的参考书籍。
2024-10-26 20:00:00 202
原创 使用text-embedding-ada-002生成向量并将向量插入Mlivus Cloud用于语义搜索的深度解析与实战指南
所以啊,大家在进行语义搜索的时候啊,一定要认真阅读相关文档和指南哦,以便更好地掌握这些技巧和方法哦!简单来说,text-embedding-ada-002是OpenAI提供的一种文本嵌入模型,它可以将文本数据转化为高维空间中的向量表示。大家好,我是大禹智库的向量数据库高级研究员王帅旭,也是《向量数据库指南》的作者。最后啊,我想说的是啊,向量数据库和语义搜索可是未来AI领域的重要发展方向哦。它们不仅可以帮助我们更好地理解和处理文本数据哦,还可以为我们的生活和工作带来更多的便利和效率哦。然后,我们就可以调用。
2024-10-26 09:00:00 23
原创 《向量数据库指南》——揭秘OpenAI文本Embedding生成与Mlivus Cloud实战
嘿,大家好!我是你们的老朋友,大禹智库的向量数据库高级研究员王帅旭,也是《向量数据库指南》的作者。今天,咱们来聊聊一个热门话题——如何使用 OpenAI 文本 Embedding 模型生成 Embedding 向量。这个话题啊,可是咱们向量数据库和 AI 应用领域的重头戏呢!首先啊,咱们得明确一点,什么是 Embedding 向量?简单来说啊,Embedding 向量就是一种将文本数据转化为高维空间中的向量表示的方法。这样一来啊,咱们就可以利用这些向量来进行各种 AI 任务了,比如语义搜索、文本分类、聚类分
2024-10-25 20:00:00 475
原创 《向量数据库指南》——揭秘OpenAI文本Embedding模型的强大之处
该模型输出向量的维度更大,为 3,072 维,能够编码详细的语义信息,因此非常适合复杂的应用,如深度语义搜索、高级推荐系统和复杂的文本分析等。在上述两个新模型推出之前,是 OpenAI Embedding 最出色的模型。模型在保持文本 Embedding 更紧凑的同时,进一步提升了性能。这个模型特别适合实时应用或计算资源有限的场景,因为它在控制模型开销的情况下能够提供高精度。模型相较于在它之前发布的模型,性能得到了提升,可以提供高质量 Embedding 向量,适合各种应用包括语义搜索、分类和聚类等。
2024-10-25 09:00:00 542
原创 解锁NLP新境界!《向量数据库指南》带你深入ext-embedding-ada-002
不过啊,虽然ext-embedding-ada-002模型非常优秀啊,但是啊,随着技术的不断进步和发展啊,它也逐渐被一些新的模型所取代了呢。最后啊,我想说的是啊,向量数据库和NLP任务啊,都是非常有前途和发展潜力的领域呢。这个模型啊,在OpenAI Embedding家族中可是个佼佼者,它以平衡之道处理广泛的NLP任务,为向量数据库领域留下了浓墨重彩的一笔。所以啊,咱们在学习和使用ext-embedding-ada-002模型时啊,一定要保持开放的心态和求知的欲望哦。好了啊,今天的分享就到这里了啊。
2024-10-24 20:00:00 15
原创 《向量数据库指南》——text-embedding-3-small:性能与效率的双重飞跃
而且啊,由于text-embedding-3-small模型的性能非常出色,所以它在处理这些任务时,能够快速地给出结果,大大提高了咱们的工作效率。毕竟啊,谁也不想自己的模型跑得慢、效果差,还占用了大量的计算资源和内存,对吧?它的输出向量维度为1,536维,虽然比一些更高维度的模型要低一些,但是啊,它完全能够在保证效果的前提下,实现更高的性能和资源效率。所以啊,如果你想要用好text-embedding-3-small模型哦,想要让你的项目和应用更加高效、准确哦,那么就一定不要错过我的《向量数据库指南》哦。
2024-10-24 09:00:00 33
原创 《向量数据库指南》——text-embedding-3-large:解锁语言处理新境界
这本书啊,可是我和我的团队花了大量时间和精力编写的,里面详细介绍了向量数据库的原理、技术、方法和应用场景,还包括了很多实战案例和干货内容。而3,072维的向量,显然比那些低维度的向量包含的信息更加丰富、更加准确。嘿,各位向量数据库和AI领域的朋友们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是《向量数据库指南》的作者。再比如高级推荐系统,你也可以用这个模型来分析用户的喜好和行为,把用户的信息和推荐对象的信息都转换成向量,然后计算它们之间的相似度,从而推荐最适合用户的产品或服务。
2024-10-23 20:00:00 712
原创 《向量数据库指南》——GraphRAG:引领GenAI新风尚的强强联合
嘿,各位向量数据库和AI领域的朋友们,我是你们的老朋友王帅旭,大禹智库的向量数据库高级研究员,也是《向量数据库指南》的作者。比如,在智能问答系统中,GraphRAG能够根据用户的问题,快速地从知识图谱中检索到相关的信息和答案,从而为用户提供准确、及时的回答。Mlivus Cloud,作为向量数据库领域的佼佼者,它提供了高效、可扩展的向量索引和查询功能,能够轻松应对大规模数据集的处理需求。最后,我想说的是,GraphRAG作为一种创新的RAG技术,它为我们提供了一种全新的思路和方法来处理复杂的信息和任务。
2024-10-23 09:00:00 920
原创 《向量数据库指南》——基础 RAG 与 GraphRAG 输出质量对比
为了展示 GraphRAG 的有效性,其开发者在博客中比较了基础 RAG 和 GraphRAG 的输出质量。我在这里引用一个简单的例子来说明。
2024-10-22 20:00:00 961
原创 《向量数据库指南》深度解析:GraphRAG如何精准应对不同类型的查询
这些生成的中间响应是评级中间响应(评级中间响应 1、响应 2... 响应 N)。Community 报告分批:系统使用由 LLM 从 Community 层次结构的指定级别生成的节点 Community 报告作为上下文数据。选定的重要点形成聚合的中间响应。Entity-文本单元映射:提取的文本单元被映射到相应的 Entity,移除原始的文本信息。生成响应:最后,系统根据前几步生成的经过过滤和排序的数据生成并响应用户查询。用户查询:首先,系统接收用户查询,这可能是一个简单的问题或更复杂的查询。
2024-10-22 09:00:00 438
原创 《向量数据库指南》揭秘:GraphRAG如何重塑知识图谱与RAG的融合之道
最后一步是为每个community及其中的重要部分生成摘要。这些摘要包括Community内的主要Entity、Entity的关系和关键Claim。它们为整个数据集提供了概览,并为后续查询提供了有用的上下文信息。在生成摘要时,GraphRAG会采用自下而上的方法,逐步合并较小的community以形成更大的摘要。这些摘要不仅有助于用户快速了解数据集的内容,还能为后续的查询处理提供有用的参考信息。
2024-10-21 21:00:00 885
原创 《向量数据库指南》揭秘:Mlivus Cloud如何赋能GraphRAG应用
在AI的世界里,检索增强生成(RAG)就像是一位聪明的助手,它能够帮助大语言模型(LLM)访问那些藏在私有数据或特定领域里的宝藏,从而提升输出的质量。想象一下,你的AI聊天机器人不仅能聊家常,还能根据用户的私人信息给出个性化的建议,或者推荐系统能精准地推送用户真正感兴趣的内容,这一切都离不开RAG的功劳。但是,别急着鼓掌,RAG可不是万能的。
2024-10-21 11:35:54 891
原创 大禹智库揭秘拼多多食品安全黑洞,双11前夜紧急预警!
据称,为了不影响即将到来的双十一活动,拼多多平台不仅未能及时有效地处理消费者的投诉,反而采取压制手段,不予正面回应和解决。在这个信息爆炸、电商繁荣的时代,双十一作为年度最大的购物盛宴,早已成为消费者们翘首以盼的购物狂欢节。不少网友纷纷表示,拼多多平台作为电商巨头,理应承担起保障消费者权益和食品安全的重任,而非为了短期利益而置消费者的身体健康于不顾。大禹智库认为,拼多多平台此次食品安全事件的发生,并非偶然现象,而是其食品安全管理机制存在严重漏洞的必然结果。二、问题分析:拼多多平台食品安全管理机制的漏洞。
2024-10-19 19:30:16 747
原创 《向量数据库指南》揭秘:为何Milvus Cloud是非结构化数据的最佳拍档?
只需要计算向量之间的相似度,就能找到最匹配的结果。传统的关系型数据库,它们擅长处理的是那种规规矩矩的表格数据,面对这些高维度的非结构化数据,可就有点力不从心了。比如,在智能客服系统中,我们可以通过向量数据库来检索与用户问题相似的历史问答记录,从而提供更加准确和高效的回答。比如,在安防监控系统中,我们可以通过向量数据库来检索出与嫌疑人相似的图像,为警方提供更加准确的线索和证据。:现在的向量数据库产品,比如Mlivus Cloud,都提供了友好的用户界面和丰富的API接口,使得开发者能够更加方便地使用和集成。
2024-10-18 20:00:00 20
原创 《向量数据库指南》揭秘:Agentic RAG如何重塑RAG系统未来?
比如,在医疗保健领域,我们可以利用Agentic RAG系统来快速检索和分析医学文献和病例数据,为医生提供更加准确和个性化的诊疗建议。RAG系统需要能够根据当前的任务和需求,选择合适的检索策略和算法,从海量的数据中快速找到最有用的信息。Mlivus Cloud支持高效的向量索引和查询操作,能够帮助RAG系统快速定位到与查询向量最相似的数据点,从而大幅提升信息检索的效率和准确性。这样一来,RAG系统就能够根据当前的任务和环境,主动检索、分析和处理信息,从而生成更加准确和有用的回答或文本。
2024-10-18 09:00:00 39
原创 《向量数据库指南》揭秘:如何超越Naive RAG,打造高效智能系统
比如,在医疗保健领域,医生可以利用RAG系统快速获取最新的医学研究成果和临床指南,从而做出更准确的诊断和治疗决策。这个模块应该能够对检索到的信息进行深入的分析和处理,提取出有用的信息和特征。这样,在面对复杂任务时,RAG系统就能够更好地理解和分析检索到的信息,从而给出更准确的答案。代理方法的核心思想是将RAG系统看作一个具有自主行动能力的智能体(Agent),它能够根据当前的任务和环境来主动检索、分析和处理信息。在未来的工作中,我们可以尝试将这种方法应用到更多的场景中,不断提升AI系统的智能性和实用性。
2024-10-17 20:00:00 22
原创 《向量数据库指南》揭秘:如何超越Naive RAG,打造高效智能系统
比如,在医疗保健领域,医生可以利用RAG系统快速获取最新的医学研究成果和临床指南,从而做出更准确的诊断和治疗决策。这个模块应该能够对检索到的信息进行深入的分析和处理,提取出有用的信息和特征。这样,在面对复杂任务时,RAG系统就能够更好地理解和分析检索到的信息,从而给出更准确的答案。代理方法的核心思想是将RAG系统看作一个具有自主行动能力的智能体(Agent),它能够根据当前的任务和环境来主动检索、分析和处理信息。在未来的工作中,我们可以尝试将这种方法应用到更多的场景中,不断提升AI系统的智能性和实用性。
2024-10-17 20:00:00 20
原创 《向量数据库指南》基于Milvus Cloud构建Agentic RAG复杂任务AI智能体
然后,我们定义两个agent tool,他们分别是vector query tool 和summary tool。整合vector query tool 和summary tool,以及React的特性,反思,路由以及使用工具能力,实现Agentic RAG。输出的答案,从答案来看,不仅详细列举了Milvus 2.3 和Milvus 2.4各种功能特性,还有功能总结与对比。这是对于上述问题的思考过程,包括React的观察,思考,行动具体步骤。最后,通过LlamaIndex的。分段之后,导入到Milvus。
2024-10-17 09:00:00 39
原创 《向量数据库指南》揭秘:如何打造智能灵活的RAG系统?
同时,我们还需要设计一个高效的子查询执行和结果合并算法,以确保系统能够准确地处理每个子查询,并将结果合并为一个完整的答案。这样,你的系统就能更准确地回答用户的问题了。Agentic RAG,简单来说,就是在Naive RAG的基础上,加入了代理方法,使其能够更智能、更灵活地处理各种复杂问题。举个例子,如果系统在处理一个查询时出现了错误,它就可以通过反思功能来分析错误的原因,并尝试调整自己的处理策略。举个例子,如果用户查询的是关于天气的信息,你就可以将查询路由到专门处理天气信息的RAG管道上。
2024-10-16 20:00:00 21
《向量数据库》-向量数据库 Milvus 是什么.pdf
2023-07-08
低代码指南100方案:52用低代码管理学生宿舍,让学生住得安心让宿管阿姨放心.pdf
2022-12-28
低代码指南100方案:51用更高效的售后服务提高客户满意度.pdf
2022-07-14
低代码指南100方案:46用好合理化建议系统,让企业集体智慧发挥到极致!.pdf
2022-07-12
低代码指南100方案:50中式快餐连锁经营管理,打通门店、食材、财务的统一运营才能独领风骚.pdf
2022-07-12
低代码指南100解决方案:44供应商信息登记、等级状态变更管理,一个系统全部搞定!.pdf
2022-07-12
低代码指南100方案:41还在用excel做进销存管理?这个系统解决方案让采购、仓库、销售管理更简单!.pdf
2022-07-10
低代码指南100方案:34数字化精益生产管理方案.pdf
2022-07-10
低代码指南100方案:39如何做好数字化采购管理,降低企业采购成本?.pdf
2022-07-10
低代码指南100方案:40出入库、调拨盘点、库存数据统计,仓库一体化管理解决方案.pdf
2022-07-10
低代码指南100方案:38低代码平台销售订单管理攻略.pdf
2022-07-10
低代码指南100方案:37企业如何做好售后服务工作?一个系统帮你解决客户、工单、备件管理难题.pdf
2022-07-10
低代码指南100方案:36 2021春运开始,政府、企业疫情防控这样做,高效又便捷.pdf
2022-07-10
低代码指南100方案:35如何做好产品研发项目管理?.pdf
2022-07-10
低代码指南100方案:33数字化转型浪潮下,企业如何实现数字化项目管理?.pdf
2022-07-10
低代码指南100方案:32低代码平台机器人自动化解决方案.pdf
2022-07-10
低代码指南100方案:31面对互联网产品突然火热背后的坑,企业该如何保持开发高效运转?.pdf
2022-07-10
低代码指南100方案:30Bug管理的流程和几个重点.pdf
2022-07-10
低代码指南100方案:28高效HR如何做好面试管理,提高招聘效率?.pdf
2022-07-10
低代码指南100方案:26为HR减负,教你如何智能化一键计算员工薪酬、发放工资条.pdf
2022-07-10
低代码指南100方案:27企业员工的“入转调离”,如何实现流程化闭环管理?.pdf
2022-07-10
低代码指南100方案:25数字化行政管理怎么做?三招轻松搞定!.pdf
2022-07-10
低代码指南100方案:24还在用Excel做固定资产管理?这套系统帮你轻松搞定固定资产申购、管理、盘点 (1).pdf
2022-07-10
低代码指南100方案:23控制行政预算和行政成本,聪明的行政管理者都在这样做.pdf
2022-07-10
低代码指南100方案:22企业如何做好客户关系管理,提升客户转化率?.pdf
2022-07-10
低代码指南100解决方案:20生产型企业如何做好EHS管理?
2022-06-09
低代码解决方案:18 设备巡检的重要性、实施难点及管理方案
2022-05-31
低代码解决方案: 做好企业设备巡检管理,就是最好的降本增效
2022-05-31
如何用低代码做好模具全生命周期管理的解决方案
2022-05-30
MRP物料需求计划低代码解决方案
2022-05-30
低代码平台开发制造业企业生产管理系统解决方案
2022-05-29
世界五百强企业是如何用低代码平台有效落地精益生产的?
2022-05-29
设备管理这么做,低代码平台成功打通信息墙,实现设备、售后双提效
2022-05-29
低代码指南100解决方案:9售后管理这么做,客户满意度可达95%
2022-05-28
低代码指南100解决方案:8拒绝无效加班!财务用一天搭建管理应用,有效减少80%重复工作
2022-05-28
疫情余波不断,企业、学校、社区如何做好常态化疫情防控的低代码解决方案
2022-05-28
低代码指南100方案:6供应商不配合,管理成本高?降本增效的供应商管理该如何实现?.pdf
2022-05-28
疫情防控常态化之下,如何做好访客管理的低代码解决方案
2022-05-28
低代码指南100方案:4全球物流大塞车,运费上涨近10倍?企业又该如何应对?.pdf
2022-05-28
低代码指南100方案:3薄利多销模式下,批发零售行业如何获取最大收益?.pdf
2022-05-27
为什么网上很多人都说支付宝,信用濒临崩塌边缘,这是怎么回事?
2022-11-21
TA创建的收藏夹 TA关注的收藏夹
TA关注的人