数据是企业的核心资产,更是企业数字化转型的关键驱动力。为了更好地管理和利用数据,进行数据共享,充分发挥数据的作用,越来越多的企业开始构建实时数据中台。
一·数据中台
定义:数据中台是将企业内部各个部门、系统、应用程序等的数据整合到一个中央化的平台上进行管理。它可以提供数据存储、数据质量管理、元数据管理、安全性控制等一系列服务,还可以提供开放API接口,以支持企业内部各种业务需求,并且方便外部应用程序或第三方服务访问企业内部的数据资源。
简单说来,数据中台这是一套可持续 “让企业的数据用起来” 的机制,一种战略选择和组织形式。它是企业数字化转型的核心基础设施,将企业内分散的数据进行统一收集、治理、存储、计算、服务化,为企业提供高效的数据服务和决策支持。
主要特点:数据中台强调的是数据的复用性、服务化和业务价值的快速体现,目的是打破企业内部的数据孤岛,实现数据的共享和价值最大化。例如,一个电商企业的数据中台可以将用户在不同平台上的行为数据、交易数据等进行整合,为营销、客服、供应链等多个部门提供统一的数据服务,从而提升企业的整体运营效率和决策效率。
服务对象:涵盖企业内的各个部门和业务环节,包括管理层、业务人员、技术人员等。数据中台的目标是为企业提供全方面的数据服务,旨在推动业务创新和数字化转型,实现数据驱动的决策和运营。例如,通过数据中台,能够为营销部门提供精准的客户画像和个性化推荐服务,为产品部门提供用户反馈数据分析,以优化产品设计方案。
二·数据中台架构
通常采用分布式架构,包括分布式存储、分布式计算、分布式数据库等技术,以满足大规模数据处理和高并发访问的需求。数据中台还会引入大数据技术,如 Hadoop、Spark、Flink 等,实现对海量数据的高效处理。
数据中台典型架构包括数据采集层、数据存储层、数据处理层、数据服务层和数据应用层。
首先数据采集层负责从各种数据源获取数据,这些数据源可以是内部业务系统、外部数据接口、物联网设备等。数据存储层则是把采集到的数据进行存储,常用的存储技术包括关系型数据库、NoSQL数据库、分布式文件系统等。数据采集层的设计至关重要,因为它直接关系到数据的完整性和准确性。在这一层,必须采用高效的数据采集工具和技术,如ETL工具、实时数据采集系统等,确保数据能够被快速、准确地获取和传输
其次数据处理层包括数据清洗、数据转换、数据计算等步骤,确保数据的质量和一致性。
数据服务层是将处理后的数据通过API、数据接口等方式供外部系统使用。
数据应用层则是基于中台的数据进行各种应用开发,如数据分析、业务报表、智能推荐等。
三·为什么要构建数据中台?
数据中台主要是解决了以下数据问题:
1. 数据孤岛问题:许多企业存在着各种各样的系统和应用程序,这些系统之间缺乏有效的集成和协作机制,导致了大量的孤立数据。
2. 数据质量问题:由于缺乏统一标准和规范,许多企业内部存在着大量低质量、重复或不完整的数据。
3. 数据安全问题:随着数字化转型进程加速推进,企业面临着越来越多的网络安全威胁。如何保护敏感信息并确保合规性成为了一个重要问题。
4. 决策效率问题:由于缺乏有效的集成和协作机制,企业内部的数据往往分散在各个系统和应用程序中,导致了决策效率低下。
这样一来,数据中台能够提升数据质量与一致性,使得企业内部各部门使用的数据具有一致性,避免因为数据不一致产生的决策失误。其次是能够有效实现数据共享和复用,打破数据孤岛,整合企业业务系统数据,避免数据的重复采集和存储,提升存储效率,数据支持业务系统调用,减少重复开发的工作量。最后是提高了数据分析效率,快速处理大规模的数据,能够让企业快速迭代业务系统,支持业务创新和产品升级。
四·如何构建实时数据中台?
1. 数据整合:将企业内部所有的数据资源进行整合和管理,形成一个统一、标准化、可进行数据共享的数据平台。这需要建立一个统一的数据模型和元数据管理系统,以确保不同系统之间的数据可以互相访问、进行数据共享。
2. 数据质量管理:建立数据质量管理体系,包括数据清洗、去重、标准化等,以确保数据的准确性和完整性。
3. 数据安全管理:建立完善的数据安全管理体系,包括访问控制、加密、备份等,以确保敏感信息的安全和合规性。
4. 数据分析和挖掘:利用大数据和人工智能技术对企业内部的数据进行分析和挖掘,发现潜在机会和问题,并提供决策支持。
5. 数据服务化:将数据中台打造成为一个服务化平台,为企业内部各个系统和应用程序提供统一的数据服务接口,以便于各个系统之间的集成和协作。
了解更多数据处理与数据集成关干货内容请关注>>>FineDataLink官网
免费试用、获取更多信息,点击了解更多>>>体验FDL功能