HYSBZ - 3261 最大异或和

题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3261

3261: 最大异或和

Time Limit: 10 Sec   Memory Limit: 512 MB
Submit: 2682   Solved: 1091
[ Submit][ Status][ Discuss]

Description

给定一个非负整数序列{a},初始长度为N。
有M个操作,有以下两种操作类型:
1、Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1。
2、Qlrx:询问操作,你需要找到一个位置p,满足l<=p<=r,使得:
a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。

Input

第一行包含两个整数 N  ,M,含义如问题描述所示。   
第二行包含 N个非负整数,表示初始的序列 A 。 
接下来 M行,每行描述一个操作,格式如题面所述。   

Output

假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。

Sample Input

5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
对于测试点 1-2,N,M<=5 。
对于测试点 3-7,N,M<=80000 。
对于测试点 8-10,N,M<=300000 。
其中测试点 1, 3, 5, 7, 9保证没有修改操作。
0<=a[i]<=10^7。

Sample Output

4
5
6


sol:

    可持久化01字典树。先转换下模型,维护当前前缀异或和sum,题目即求在L-1,R-1区间内,寻找u,使得1~u的前缀异或和^sum^x的值最大。处理的时候要将0加入初始Trie中,当询问的L=1时,因为L-2< 0,所以直接将其结对应的根节点标号置为0(sz恒为0)。 

    用类似主席树的思想,为每一个前缀和(这里是异或和)维护一颗Trie,查询的时候如果最优分支在在L,r区间个数不为零,则选之,否则选另外一个分支。


code:

#include<iostream>
#include<cstring>
#include<algorithm>
#include<stdio.h>
#include<queue>

using namespace std;

const int maxn = 2e7+10;

int rt[maxn];
int sum,tot;

struct node{
    int ch[2];
    int sz;
};

int cnt;
node tr[maxn];

void insert(int pre,int &x,int val,int len){
    x = ++tot;
    tr[x] = tr[pre];
    tr[x].sz++;
    if(len<0) return ;
    int c = (val&(1<<len)) > 0?1:0;
    insert(tr[pre].ch[c],tr[x].ch[c],val,len-1);
}

int query(int l,int r,int val){
    int ans = 0;
    int Tr,Tl;
    Tr = rt[r];
    if(l>0) {
        l--;
        Tl=rt[l];
    }
    else Tl=0;
    for(int i =  23;i>= 0;i--){
        int c = (val&(1<<i)) >0 ? 1:0;
        c^=1;
        int sub = tr[tr[Tr].ch[c]].sz - tr[tr[Tl].ch[c]].sz;
        if(tr[tr[Tr].ch[c]].sz - tr[tr[Tl].ch[c]].sz<=0) c^=1;
        if(c) ans|=(1<<i);
        Tr=tr[Tr].ch[c];
        Tl=tr[Tl].ch[c];
    }
    return ans;
}

int main(){
//    freopen("in.txt","r",stdin);
    int n,m;
    scanf("%d%d",&n,&m);
    insert(rt[0],rt[0],0,23);
    for(int i=1;i<=n;i++){
        int a; scanf("%d",&a);
        sum^=a;
        insert(rt[i-1],rt[i],sum,23);
    }
    cnt=n;
    char op[2];
    while(m--){
        scanf("%s",op);
        if(op[0]=='A'){
            int x;
            scanf("%d",&x);
            ++cnt;
            sum^=x;
            insert(rt[cnt-1],rt[cnt],sum,23);
        }
        else{
            int l,r,x;
            scanf("%d%d%d",&l,&r,&x);
            x^=sum;
            int ans = query(l-1,r-1,x);
            ans^=x;
            printf("%d\n",ans);
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值