-
贝叶斯均衡解析
- 概念核心:贝叶斯均衡是在不完全信息博弈情境下的一种策略均衡。在这种博弈中,参与者对其他参与者的某些关键信息(如偏好、类型等)不完全清楚,只知道其概率分布。每个参与者根据自己所知道的信息(包括自己的类型和对其他参与者类型的概率判断)来选择最优策略,并且所有参与者的策略选择在这种概率预期下是相互一致的。
- 重要性:它能够帮助我们理解在信息不对称的情况下,参与者如何理性地做出决策,以及这些决策如何相互影响达到一种稳定的状态。这种均衡在经济学、政治学、计算机科学等多个领域都有广泛的应用,比如分析市场竞争、拍卖、谈判等场景中的策略选择。
-
野人和扩建的例子及收益矩阵
-
背景设定:
- 假设有一个岛屿,岛上有两种类型的野人,一种是爱好和平的野人(概率为(p)),另一种是好斗的野人(概率为(1 - p))。有一个外来者打算在岛上扩建居住地。外来者不知道遇到的野人是哪种类型,野人知道自己的类型。
- 外来者可以选择扩建或者不扩建,野人可以选择合作(比如允许外来者扩建并且不干扰)或者对抗(阻止外来者扩建)。
-
收益矩阵构建:
- 对于爱好和平的野人来说:
- 如果外来者扩建,野人合作的收益为(3)(可能获得一些外来者带来的好处,如交换物品等),对抗的收益为(1)(可能因为冲突损失一些资源);如果外来者不扩建,野人合作的收益为(2)(维持现状的和平收益),对抗的收益为(1)(无端的冲突没有好处)。
- 对于好斗的野人来说:
- 如果外来者扩建,野人合作的收益为(1)(觉得自己的领地被侵犯,即使合作也不开心),对抗的收益为(4)(成功阻止外来者扩张,捍卫领地);如果外来者不扩建,野人合作的收益为(2)(维持现状),对抗的收益为(3)(可能会因为没有冲突对象而觉得有点无聊,收益稍低)。
- 对于外来者来说:
- 如果遇到爱好和平的野人并且合作,扩建的收益为(5)(成功扩建得到资源等收益),不扩建的收益为(3)(维持现状);如果遇到好斗的野人并且合作,扩建的收益为(2)(勉强扩建但可能会有后续麻烦),不扩建的收益为(3)(维持现状);如果遇到爱好和平的野人并且对抗,扩建的收益为(0)(扩建失败,有损失),不扩建的收益为(3)(没有损失);如果遇到好斗的野人并且对抗,扩建的收益为(-1)(冲突导致较大损失),不扩建的收益为(3)(没有损失)。
- 收益矩阵如下:
- 对于爱好和平的野人来说:
-
野人策略/外来者策略 | 扩建 | 不扩建 |
---|---|---|
爱好和平野人 - 合作 | (3,5) | (2,3) |
爱好和平野人 - 对抗 | (1,0) | (1,3) |
好斗野人 - 合作 | (1,2) | (2,3) |
好斗野人 - 对抗 | (4, - 1) | (3,3) |
- 贝叶斯均衡分析:
- 对于野人:
- 爱好和平的野人:比较合作和对抗的收益,当外来者扩建时, 3 > 1 3>1 3>1,会选择合作;当外来者不扩建时, 2 > 1 2 > 1 2>1,也会选择合作。
- 好斗的野人:当外来者扩建时, 4 > 1 4>1 4>1,会选择对抗;当外来者不扩建时, 3 > 2 3>2 3>2,会选择对抗。
- 对于外来者:
- 外来者考虑遇到不同类型野人的概率。期望收益如果扩建是 E e x p a n d = p × ( 5 ) + ( 1 − p ) × ( 2 ) = 3 p + 2 E_{expand}=p\times(5)+(1 - p)\times(2)=3p + 2 Eexpand=p×(5)+(1−p)×(2)=3p+2,不扩建的期望收益 E n o t = 3 E_{not}=3 Enot=3。当 E e x p a n d > E n o t E_{expand}>E_{not} Eexpand>Enot,即 3 p + 2 > 3 3p + 2>3 3p+2>3,解得 p > 1 3 p>\frac{1}{3} p>31时,外来者会选择扩建;当 p ≤ 1 3 p\leq\frac{1}{3} p≤31时,外来者会选择不扩建。
- 所以贝叶斯均衡是:当 p > 1 3 p>\frac{1}{3} p>31时,爱好和平的野人选择合作,好斗的野人选择对抗,外来者选择扩建;当 p ≤ 1 3 p\leq\frac{1}{3} p≤31时,爱好和平的野人选择合作,好斗的野人选择对抗,外来者选择不扩建。
- 对于野人: