ultimatum game

最后通牒博弈解析

最后通牒博弈(Ultimatum Game) 是一种研究公平性和决策行为的博弈论模型。游戏规则如下:

  1. 提议者(Player 1) 提出一个分配方案,将总金额 ( M ) 分为两部分:给回应者 x x x,提议者保留 M − x M - x Mx
  2. 回应者(Player 2) 决定接受或拒绝:
    • 接受:双方按提议分配收益。
    • 拒绝:双方均得不到任何收益。

假设总金额为 M = 10 M = 10 M=10


收益矩阵(Payoff Matrix)

我们构造一个收益矩阵,横轴为提议金额 ( x ),纵轴为回应者的决策。

假设:回应者只接受 x ≥ 3 x \geq 3 x3 的分配。

提议金额 ( x )12345678910
接受 (P1, P2)(9, 1)(8, 2)(7, 3)(6, 4)(5, 5)(4, 6)(3, 7)(2, 8)(1, 9)(0, 10)
拒绝 (P1, P2)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)(0, 0)

均衡分析

1. 理性分析(纳什均衡)

  • 如果玩家完全理性且追求收益最大化,回应者会接受任何 x > 0 x > 0 x>0,因为得到 x x x 比拒绝后的 0 更好。
  • 提议者预期回应者会接受最低的 x = 1 x = 1 x=1,因此最优策略是提议 x = 1 x = 1 x=1

2. 实验结果中的行为偏差

  • 实验研究表明,人类的公平性偏好会影响决策:
    • 回应者倾向于拒绝明显不公平的提议(如 ( x = 1 ) 或 ( x = 2 ))。
    • 提议者通常提出 x = 3 x = 3 x=3 x = 5 x = 5 x=5 的较公平分配,以提高被接受的概率。

不同玩家策略的影响

在最后通牒博弈中,不同的策略组合会影响双方的收益以及博弈结果。以下是一些常见的策略讨论:


1. 提议者的策略

提议者的目标是让提议被接受的同时最大化自己的收益。

  • 极端策略:提议 x = 1 x = 1 x=1

    • 优点:如果回应者接受,提议者的收益最大。
    • 风险:容易被回应者拒绝(实际博弈中,人类具有强烈的公平性偏好)。
  • 中庸策略:提议 x = 3 x = 3 x=3 x = 5 x = 5 x=5

    • 优点:更符合公平分配的心理预期,增加被接受的概率。
    • 缺点:提议者需要牺牲一部分收益。
  • 慷慨策略:提议 x > 5 x > 5 x>5

    • 优点:几乎确保回应者接受。
    • 缺点:提议者的收益过低,违背收益最大化的目标。

2. 回应者的策略

回应者的目标是在接受和拒绝之间权衡,以最大化自己的心理满足(收益 + 公平感)。

  • 完全理性策略:接受任何 x > 0 x > 0 x>0

    • 优点:确保得到非零收益。
    • 缺点:无视公平性,可能导致长期合作中处于劣势。
  • 公平性策略:接受 x ≥ 3 x \geq 3 x3,拒绝 x < 3 x < 3 x<3

    • 优点:通过拒绝不公平提议,表达对公平分配的期望。
    • 缺点:有可能因拒绝而导致收益为零。
  • 极端策略:拒绝任何 x < 5 x < 5 x<5

    • 优点:强烈表达对不公平提议的反对。
    • 缺点:提议者可能调整策略以减少合作机会,双方收益都下降。

博弈的动态演变

1. 重复博弈的影响

如果最后通牒博弈被反复进行(如长期合作关系中),回应者的策略会影响提议者的行为调整:

  • 提议者倾向于提高分配金额,以确保未来的提议被接受。
  • 回应者可以通过拒绝不公平提议建立更高的期望基准。

2. 社会规范与文化影响

实验显示,不同文化背景下的玩家对公平的定义和接受阈值有所不同:

  • 在注重个人主义的文化中(如美国),提议者更倾向于提出较低分配。
  • 在注重集体主义的文化中(如亚洲国家),提议者通常会提出较高分配以避免冲突。

数学表示

假设总金额为 M M M,提议金额为 x x x

  • 提议者的收益: M − x M - x Mx
  • 回应者的收益: x x x

如果回应者接受的阈值为 x m i n x_{min} xmin,则提议者的最佳策略为:
x ∗ = x m i n x^* = x_{min} x=xmin

其中,提议者的收益为:
Payoff P 1 = M − x ∗ \text{Payoff}_{P1} = M - x^* PayoffP1=Mx

而回应者的收益为:
Payoff P 2 = x ∗ \text{Payoff}_{P2} = x^* PayoffP2=x


现实应用

最后通牒博弈不仅是一个理论模型,还在以下领域中有广泛应用:

  1. 经济学:研究分配公平性与效率之间的权衡。
  2. 政治科学:分析谈判中的最后通牒决策,如国际冲突中的条件设定。
  3. 行为科学:理解人类心理偏好对经济行为的影响。
  4. 人工智能:设计具有公平决策能力的智能系统。

结论

  • 最后通牒博弈揭示了人类决策中公平偏好的重要性。
  • 虽然理论上纳什均衡是 x = 1 x = 1 x=1,但实际博弈中,公平性和社会规范会导致更高的提议金额。
  • 这一模型在经济、社会、政治等领域具有深远的现实意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值