最后通牒博弈解析
最后通牒博弈(Ultimatum Game) 是一种研究公平性和决策行为的博弈论模型。游戏规则如下:
- 提议者(Player 1) 提出一个分配方案,将总金额 ( M ) 分为两部分:给回应者 x x x,提议者保留 M − x M - x M−x。
- 回应者(Player 2) 决定接受或拒绝:
- 接受:双方按提议分配收益。
- 拒绝:双方均得不到任何收益。
假设总金额为 M = 10 M = 10 M=10。
收益矩阵(Payoff Matrix)
我们构造一个收益矩阵,横轴为提议金额 ( x ),纵轴为回应者的决策。
假设:回应者只接受 x ≥ 3 x \geq 3 x≥3 的分配。
提议金额 ( x ) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|
接受 (P1, P2) | (9, 1) | (8, 2) | (7, 3) | (6, 4) | (5, 5) | (4, 6) | (3, 7) | (2, 8) | (1, 9) | (0, 10) |
拒绝 (P1, P2) | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) | (0, 0) |
均衡分析
1. 理性分析(纳什均衡)
- 如果玩家完全理性且追求收益最大化,回应者会接受任何 x > 0 x > 0 x>0,因为得到 x x x 比拒绝后的 0 更好。
- 提议者预期回应者会接受最低的 x = 1 x = 1 x=1,因此最优策略是提议 x = 1 x = 1 x=1。
2. 实验结果中的行为偏差
- 实验研究表明,人类的公平性偏好会影响决策:
- 回应者倾向于拒绝明显不公平的提议(如 ( x = 1 ) 或 ( x = 2 ))。
- 提议者通常提出 x = 3 x = 3 x=3 至 x = 5 x = 5 x=5 的较公平分配,以提高被接受的概率。
不同玩家策略的影响
在最后通牒博弈中,不同的策略组合会影响双方的收益以及博弈结果。以下是一些常见的策略讨论:
1. 提议者的策略
提议者的目标是让提议被接受的同时最大化自己的收益。
-
极端策略:提议 x = 1 x = 1 x=1
- 优点:如果回应者接受,提议者的收益最大。
- 风险:容易被回应者拒绝(实际博弈中,人类具有强烈的公平性偏好)。
-
中庸策略:提议 x = 3 x = 3 x=3 至 x = 5 x = 5 x=5
- 优点:更符合公平分配的心理预期,增加被接受的概率。
- 缺点:提议者需要牺牲一部分收益。
-
慷慨策略:提议 x > 5 x > 5 x>5
- 优点:几乎确保回应者接受。
- 缺点:提议者的收益过低,违背收益最大化的目标。
2. 回应者的策略
回应者的目标是在接受和拒绝之间权衡,以最大化自己的心理满足(收益 + 公平感)。
-
完全理性策略:接受任何 x > 0 x > 0 x>0
- 优点:确保得到非零收益。
- 缺点:无视公平性,可能导致长期合作中处于劣势。
-
公平性策略:接受 x ≥ 3 x \geq 3 x≥3,拒绝 x < 3 x < 3 x<3
- 优点:通过拒绝不公平提议,表达对公平分配的期望。
- 缺点:有可能因拒绝而导致收益为零。
-
极端策略:拒绝任何 x < 5 x < 5 x<5
- 优点:强烈表达对不公平提议的反对。
- 缺点:提议者可能调整策略以减少合作机会,双方收益都下降。
博弈的动态演变
1. 重复博弈的影响
如果最后通牒博弈被反复进行(如长期合作关系中),回应者的策略会影响提议者的行为调整:
- 提议者倾向于提高分配金额,以确保未来的提议被接受。
- 回应者可以通过拒绝不公平提议建立更高的期望基准。
2. 社会规范与文化影响
实验显示,不同文化背景下的玩家对公平的定义和接受阈值有所不同:
- 在注重个人主义的文化中(如美国),提议者更倾向于提出较低分配。
- 在注重集体主义的文化中(如亚洲国家),提议者通常会提出较高分配以避免冲突。
数学表示
假设总金额为 M M M,提议金额为 x x x:
- 提议者的收益: M − x M - x M−x
- 回应者的收益: x x x
如果回应者接受的阈值为
x
m
i
n
x_{min}
xmin,则提议者的最佳策略为:
x
∗
=
x
m
i
n
x^* = x_{min}
x∗=xmin
其中,提议者的收益为:
Payoff
P
1
=
M
−
x
∗
\text{Payoff}_{P1} = M - x^*
PayoffP1=M−x∗
而回应者的收益为:
Payoff
P
2
=
x
∗
\text{Payoff}_{P2} = x^*
PayoffP2=x∗
现实应用
最后通牒博弈不仅是一个理论模型,还在以下领域中有广泛应用:
- 经济学:研究分配公平性与效率之间的权衡。
- 政治科学:分析谈判中的最后通牒决策,如国际冲突中的条件设定。
- 行为科学:理解人类心理偏好对经济行为的影响。
- 人工智能:设计具有公平决策能力的智能系统。
结论
- 最后通牒博弈揭示了人类决策中公平偏好的重要性。
- 虽然理论上纳什均衡是 x = 1 x = 1 x=1,但实际博弈中,公平性和社会规范会导致更高的提议金额。
- 这一模型在经济、社会、政治等领域具有深远的现实意义。