Skewed Distribution

  1. 基本概念

    • 偏态分布(Skewed Distribution)是一种概率分布,它与正态分布相对。正态分布是对称的,而偏态分布是非对称的,即数据在分布的一侧比另一侧有更长的“尾巴”。
    • 偏态分布分为正偏态分布和负偏态分布。在正偏态分布中,数据的右侧(较大值的一侧)有较长的尾巴,这意味着分布中有少数较大的值将分布的右侧“拉长”。例如,收入数据通常呈正偏态分布,因为少数高收入者会拉高右侧的尾巴,大部分人的收入集中在较低的区间。在负偏态分布中,数据的左侧(较小值的一侧)有较长的尾巴,即少数较小的值使分布的左侧“拉长”。例如,考试成绩如果出现负偏态,说明有少数很低的分数将分布向左拉,大部分学生的成绩相对较高。
  2. 衡量指标 - 偏度(Skewness)

    • 偏度是用来量化偏态分布程度的统计指标。它的计算涉及到数据的三阶矩。对于一个样本数据集 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,样本偏度的计算公式较为复杂,简单表示为:
      S k e w n e s s = n ( n − 1 ) ( n − 2 ) ∑ i = 1 n ( x i − x ‾ s ) 3 Skewness = \frac{n}{(n - 1)(n - 2)}\sum_{i = 1}^{n}(\frac{x_i-\overline{x}}{s})^3 Skewness=(n1)(n2)ni=1n(sxix)3
      其中 x ‾ \overline{x} x是样本均值, s s s是样本标准差。
    • 偏度的值可以解释分布的形状:
      • 偏度 = 0时,表示数据是对称分布,很可能是正态分布。
      • 偏度 > 0时,表示正偏态分布,右侧尾巴较长。
      • 偏度 < 0时,表示负偏态分布,左侧尾巴较长。
  3. 与正态分布的对比

    • 形状差异:正态分布是钟形曲线,关于均值对称,中位数和众数等于均值。而偏态分布不具有这种对称性。例如,正态分布下,大约68%的数据落在均值加减一个标准差的范围内;对于偏态分布,数据集中在一侧,这种比例关系不成立。
    • 参数关系差异:在正态分布中,均值、中位数和众数相等,这三个统计量能够很好地描述分布的中心位置。但在偏态分布中,它们的值通常不相等。在正偏态分布中,众数 < 中位数 < 均值;在负偏态分布中,均值 < 中位数 < 众数。这是因为长尾巴一侧的数据会对均值产生较大的“拉动”作用,而中位数相对更稳健,受极端值影响较小,众数则是数据中出现频率最高的值。
  4. 产生原因及应用场景

    • 产生原因
      • 数据的生成机制可能导致偏态分布。例如,在经济学中,财富的积累往往是一个复利增长的过程,这使得财富分布呈现正偏态。开始时财富较少,但随着时间推移,少数人的财富以指数方式增长,导致右侧尾巴很长。
      • 人为因素或选择偏差也可能造成偏态。比如在市场调查中,如果调查的样本主要集中在高消费人群,那么关于消费金额的数据可能会呈现正偏态。
    • 应用场景
      • 在金融领域,股票收益率的分布常常是偏态的。了解偏态分布有助于投资者评估风险。正偏态的收益率分布可能意味着有获得高额收益的机会,但同时也伴随着不确定性和风险。
      • 在医学研究中,疾病的潜伏期、药物的疗效等数据可能呈现偏态分布。例如,某种药物的治疗效果在大部分患者中可能是中等水平,但在少数患者中可能出现特别好或特别差的情况,这些数据的分布有助于医生和研究人员评估药物的有效性和安全性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值