P3211 [HNOI2011]XOR和路径 题解

洛谷传送门

Solution

我们可以发现这个题和游走很像(虽然游走是HNOI2013,这个是HNOI2011吧)

但是这个题是要求异或和,每一位是互不干扰的,再加上期望的线性性,所以考虑每一位单独计算。

我们设 f i f_i fi 表示从 i i i n n n 路径这一位异或和为 1 1 1 的概率,那么我们可以显然的得到转移方程:

f u = ∑ v ∈ w u , v 为 1 f v d u + ∑ v ∈ w u , v 为 0 1 − f v d u f_u=\sum\limits_{v \in w_{u,v}为1} \cfrac{f_v}{d_u}+\sum\limits_{v\in w_{u,v}为0} \cfrac{1-f_v}{d_u} fu=vwu,v1dufv+vwu,v0du1fv

(其中 w u , v w_{u,v} wu,v 表示 ⟨ u , v ⟩ \langle u,v\rangle u,v 这条边的边权, d u d_u du 表示 u u u的度数,即与 u u u 相连的边数,包括自环)

前面的 ∑ \sum 表示要在 v v v 中找 0 0 0 的概率,后面的表示要在 v v v 中找 1 1 1 的概率。

我们发现这个方程是有后效性的,所以还要继续考虑。发现进一步转化可以得到:

− ∑ v ∈ w u , v 为 1 1 d u = − f u + ∑ v ∈ w u , v 为 0 f v d u − ∑ v ∈ w u , v 为 1 f v d u -\sum\limits_{v \in w_{u,v}为1} \cfrac{1}{d_u}=-f_u+\sum\limits_{v \in w_{u,v}为0} \cfrac{f_v}{d_u}-\sum\limits_{v \in w_{u,v}为1} \cfrac{f_v}{d_u} vwu,v1du1=fu+vwu,v0dufvvwu,v1dufv

哦~这长得很像 n − 1 n−1 n1 元方程啊,而我们总共有 n − 1 n−1 n1 个方程,所以考虑用高斯消元求解。

( 因为到达 n n n 的时候就停止了,所以 f n = 0 f_n=0 fn=0,在计算的时候不考虑)

再简单的提一下计算答案: 设当前位为 i i i ,那就 a n s + = f 1 × 2 i ans+=f_1\times 2^i ans+=f1×2i即可。

时间复杂度为 O ( n 3 log ⁡ w ) O(n^3\log w) O(n3logw)

完结撒花


你不会以为这就完了吧(⊙_⊙)

为什么是从 u u u n n n 逆推呢?我相信只有我一个蒟蒻感到疑惑,但是还是要说一下。

因为异或和不为 1 1 1 的概率是 1 − f u 1-f_u 1fu ,但是正推此时的含义是: 1 1 1 u u u 异或和不为 1 1 1 的概率和 1 1 1 无法走到 u u u 的概率;但是逆推的话, 1 − f u 1-f_u 1fu 就还是走到 n n n ヾ(≧▽≦*)o

正式完结撒发。

Code

#include<bits/stdc++.h>
#define re register

using namespace std;
const int N=110;
const double eps=1e-9;
int n,m,head[N],cnt,d[N],pw[N];
double a[N][N],f[N],ans;
struct edge{
    int to,nxt,w;
}e[N*N<<1];

inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(!isdigit(ch)){if(ch=='-') f=-1;ch=getchar();}
    while(isdigit(ch)){x=x*10+(ch^48);ch=getchar();}
    return x*f;
}

inline void add(int u,int v,int w){
    e[++cnt].to=v;
    e[cnt].w=w;
    e[cnt].nxt=head[u];
    head[u]=cnt;
    d[v]++;
}

inline void Gauss(){
    for(re int i=1;i<n;i++)
        for(re int j=i+1;j<=n;j++){
            double tmp=a[j][i]/a[i][i];
            for(re int k=1;k<=n+1;k++) a[j][k]-=a[i][k]*tmp;
        }
    for(re int i=n;i;i--){
        f[i]=a[i][n+1]/a[i][i];
        for(re int j=i-1;j;j--) a[j][n+1]-=a[j][i]*f[i];
    }
}

int main(){
    n=read(); m=read();
    memset(head,-1,sizeof(head));
    pw[0]=1;
    for(re int i=1;i<=30;i++) pw[i]=pw[i-1]*2;
    for(re int i=1,u,v,w;i<=m;i++){
        u=read(); v=read(); w=read();
        add(u,v,w); if(u!=v) add(v,u,w);
    }
    for(re int i=0;i<=30;i++){
        memset(a,0,sizeof(a)); a[n][n]-=1.0;
        for(re int u=1;u<n;u++){
            a[u][u]=-1;
            for(re int j=head[u];j!=-1;j=e[j].nxt){
                int v=e[j].to;
                if(~e[j].w&pw[i]) a[u][v]+=1.0/d[u];
                else a[u][n+1]-=1.0/d[u],a[u][v]-=1.0/d[u];
            }
        }
        Gauss();
        ans+=f[1]*pw[i];
    }
    printf("%.3lf\n",ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值