【动态规划 + 线段树】P5280 [ZJOI2019] 线段树

[ZJOI2019]线段树

题目描述

九条可怜是一个喜欢数据结构的女孩子,在常见的数据结构中,可怜最喜欢的就是线段树。

线段树的核心是懒标记,下面是一个带懒标记的线段树的伪代码,其中 t a g tag tag 数组为懒标记:

其中函数 Lson ⁡ ( N o d e ) \operatorname{Lson}(Node) Lson(Node) 表示 N o d e Node Node 的左儿子, Rson ⁡ ( N o d e ) \operatorname{Rson}(Node) Rson(Node) 表示 N o d e Node Node 的右儿子。

现在可怜手上有一棵 [ 1 , n ] [1,n] [1,n] 上的线段树,编号为 1 1 1。这棵线段树上的所有节点的 t a g tag tag 均为 0 0 0。接下来可怜进行了 m m m 次操作,操作有两种:

  • 1   l   r 1\ l\ r 1 l r,假设可怜当前手上有 t t t 棵线段树,可怜会把每棵线段树复制两份( t a g tag tag 数组也一起复制),原先编号为 i i i 的线段树复制得到的两棵编号为 2 i − 1 2i-1 2i1 2 i 2i 2i,在复制结束后,可怜手上一共有 2 t 2t 2t 棵线段树。接着,可怜会对所有编号为奇数的线段树进行一次 Modify ⁡ ( r o o t , 1 , n , l , r ) \operatorname{Modify}(root,1,n,l,r) Modify(root,1,n,l,r)

  • 2 2 2,可怜定义一棵线段树的权值为它上面有多少个节点 t a g tag tag 1 1 1。可怜想要知道她手上所有线段树的权值和是多少。

输入格式

第一行输入两个整数 n , m n,m n,m 表示初始区间长度和操作个数。

接下来 m m m 行每行描述一个操作,输入保证 1 ≤ l ≤ r ≤ n 1 \le l \le r \le n 1lrn

输出格式

对于每次询问,输出一行一个整数表示答案,答案可能很大,对 998244353 998244353 998244353 取模后输出即可。

样例 #1

样例输入 #1

5 5
2
1 1 3
2
1 3 5
2

样例输出 #1

0
1
6

提示

[1,5] 上的线段树如下图所示:

在第一次询问时,可怜手上有一棵线段树,它所有点上都没有标记,因此答案为 0 0 0

在第二次询问时,可怜手上有两棵线段树,按照编号,它们的标记情况为:

  1. [ 1 , 3 ] [1,3] [1,3] 上有标记,权值为 1 1 1
  2. 没有点有标记,权值为 0 0 0

因此答案为 1 1 1

在第三次询问时,可怜手上有四棵线段树,按照编号,它们的标记情况为:

  1. [ 1 , 2 ] , [ 3 , 3 ] , [ 4 , 5 ] [1,2],[3,3],[4,5] [1,2],[3,3],[4,5] 上有标记,权值为 3 3 3
  2. [ 1 , 3 ] [1,3] [1,3] 上有标记,权值为 1 1 1
  3. [ 3 , 3 ] , [ 4 , 5 ] [3,3],[4,5] [3,3],[4,5] 上有标记,权值为 2 2 2
  4. 没有点有标记,权值为 0 0 0

因此答案为 6 6 6


Solution

STEP 1 - 题意转换

题目中有一个复制操作,可以发现其实相当于将原来的所有线段树进行备份,再进行操作。

相当于是一个前缀和。这说明答案可以通过递推得到。

STEP 2 - 分析性质

由上面的题意转换,我们可以考虑每一次操作的贡献。

观察在线段树上的操作,所有的节点可以分成如下 5 5 5 类:

在这里插入图片描述

  • 一类点(白色): 这类点被修改区间半覆盖 ,在 p u s h d o w n \rm{pushdown} pushdown 时标记下传消失
  • 二类点(黑色): 被修改区间全覆盖,并且可以遍历到 ,得到标记
  • 三类点(橙色): 无法遍历到, 但可以得到 p u s h d o w n \rm{pushdown} pushdown 来的标记
  • 四类点(灰色): 被修改区间全覆盖,但无法遍历到
  • 五类点(橙色): 无法遍历到,且无法得到标记

f i , u f_{i,u} fi,u 表示共有多少棵线段树的节点 u u u 在第 i i i 次修改时有标记,就可以利用这个性质进行 d p dp dp

STEP 3 - 动态规划

由于复制操作会带来许多冗余的统计,所以我们可以稍微改变一下状态:

f i , u f_{i,u} fi,u 表示节点 u u u 在第 i i i 次修改时有标记的线段树的占比,也就是概率

最后将总数 2 i 2 ^ i 2i 乘回来即可。

发现这个式子对于三类点不好转移,

再考虑 g i , u g_{i,u} gi,u 表示 1 ∼ u 1\sim u 1u 经过的节点都没有标记的概率,那么:

一类点:

复制后修改时一半的标记消失,因此 f i , u = 1 2 f i − 1 , u f_{i,u}=\dfrac{1}{2}f_{i-1,u} fi,u=21fi1,u

但这时后一半的线段树中 1 ∼ u 1\sim u 1u 路径上都没有标记了,故 g i , u = 1 2 + 1 2 g i , u g_{i,u} = \dfrac{1}{2}+\dfrac{1}{2}g_{i,u} gi,u=21+21gi,u

二类点:

一半的点打上标记,故 f i , u = 1 2 + 1 2 f i − 1 , u f_{i,u}=\dfrac{1}{2}+\dfrac{1}{2}f_{i-1,u} fi,u=21+21fi1,u

但一半的线段树中 1 ∼ u 1\sim u 1u 路径上一定有标记,故 g i , u = 1 2 g i − 1 , u g_{i,u}=\dfrac{1}{2}g_{i-1,u} gi,u=21gi1,u

这相当于跟一类点的情况反过来

三类点:

只有 1 ∼ u 1\sim u 1u 路径上有标记的三类点才会对答案有贡献,

f i , u = 1 2 − 1 2 g i − 1 , u + 1 2 f i − 1 , u f_{i,u}=\dfrac{1}{2}-\dfrac{1}{2}g_{i-1,u}+\dfrac{1}{2}f_{i-1,u} fi,u=2121gi1,u+21fi1,u

此时 g g g 无变化

四类点:

标记的没变,因此 f f f 无变化

而一半的线段树 1 ∼ u 1\sim u 1u 的路径上因为全覆盖,在这类点的祖先节点一定有至少一个点有标记,

g i , u = 1 2 g i − 1 , u g_{i,u}=\dfrac{1}{2}g_{i-1,u} gi,u=21gi1,u

五类点:

f , g f,g f,g 均无变化。

STEP 4 - 快速维护

可以发现,对于 1,2,3 类点,最多 O ( log ⁡ n ) O(\log n) O(logn) 个,

五类点不操作,四类点有 O ( n ) O(n) O(n) 个,

而对于四类点,只有 g g g 每次变化,乘 1/2 ,可以用懒标记快速维护。

对于答案的统计,记录 s f i , u = f i , u + s f i , l s u + s f i , r s u sf_{i,u}=f_{i,u}+sf_{i,ls_u}+sf_{i,rs_u} sfi,u=fi,u+sfi,lsu+sfi,rsu 即可,

最后输出 s f i , 1 ∗ 2 i sf_{i,1} * 2 ^ i sfi,12i 即可。


Code

#include<iostream>
#include<stdio.h>
#include<string.h>
#include<algorithm>
#define int long long
using namespace std;

const int N = 1e5 + 10, MOD = 998244353, GRY = 499122177;

inline void read(int &x)
{
    int sgn = 1; x = 0;
    char ch = getchar();
    while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if(ch == '-') sgn = -1, ch = getchar();
    while(ch >= '0' && ch <= '9') x = (x << 1) + (x << 3), x += (ch ^ '0'), ch = getchar();
    x *= sgn;
}

int n, m;

struct SegmentTree
{
    int l, r, sf, f, g, tag;
}t[N << 3];

void pushup(int p)
{
    t[p].sf = (t[p].f + (t[p << 1].sf + t[p << 1 | 1].sf) % MOD) % MOD;
}

void build(int p, int l, int r)
{
    t[p].l = l; t[p].r = r;
    t[p].tag = t[p].g = 1;
    if(l == r) return;
    int mid = l + r >> 1;
    build(p << 1, l, mid);
    build(p << 1 | 1, mid + 1, r);
} 

void spread(int p)
{
    if(t[p].tag != 1)
    {
        t[p << 1].g = t[p].tag * t[p << 1].g % MOD;
        t[p << 1 | 1].g = t[p].tag * t[p << 1 | 1].g % MOD;
        t[p << 1].tag = t[p].tag * t[p << 1].tag % MOD;
        t[p << 1 | 1].tag = t[p].tag * t[p << 1 | 1].tag % MOD;
        t[p].tag = 1; 
    }
}

void update(int p)
{
    t[p].f = GRY * ((1 - t[p].g + t[p].f) % MOD) % MOD;
    t[p].f += MOD; t[p].f %= MOD; pushup(p);
}

void change(int p, int l, int r)
{
    if(l <= t[p].l && t[p].r <= r)
    {
        t[p].f = GRY * (t[p].f + 1) % MOD;
        t[p].g = GRY * t[p].g % MOD;
        t[p].tag = GRY * t[p].tag % MOD;
        pushup(p);
        return;
    }
    int mid = t[p].l + t[p].r >> 1; spread(p);
    t[p].f = GRY * t[p].f % MOD; t[p].g = GRY * (1 + t[p].g) % MOD;
    if(r <= mid) change(p << 1, l, r), update(p << 1 | 1);
    else if(l > mid) change(p << 1 | 1, l, r), update(p << 1);
    else change(p << 1, l, r), change(p << 1 | 1, l, r); 
    pushup(p);
}

signed main()
{
    read(n); read(m);
    int sum = 1; build(1, 1, n);
    for(int i = 1; i <= m; i ++ )
    {
        int op, l, r; read(op);
        if(op == 1) read(l), read(r), change(1, l, r), sum <<= 1ll, sum %= MOD;
        else printf("%lld\n", sum * t[1].sf % MOD);
    }
    return 0;
}

END.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值