Study Notes- Smoothers and Generalised Additive Models

Preliminaries

Preliminaries
In this practical we will do some model checking and model choice in R.
We need the following packages

  • ggplot2 - Package to implement the ggplot language for graphics in R.
  • tidyverse - This package is designed to make it easy to install and load multiple ‘tidyverse’ packages in a single step
  • MASS - Functions and datasets to support Venables and Ripley, “Modern Applied Statistics with S”(4th edition, 2002).
  • caret - For easy machine learning workflow
  • splines - Generalized additive (mixed) models, some of their extensions and other generalized ridge regression with multiple smoothing parameter estimation by (Restricted) Marginal Likelihood, Generalized Cross Validation and others

Make sure that these packages are downloaded and installed in R. We use the require() function to load
them into the R library. Note, this does the same as library() in this case.

We will use the Boston data set in the MASS package to predict the median house value (mdev), in Boston
Suburbs, based on the explanatory variable lstat (percentage of lower status of the population).

We want to build some models and then assess how well they do. For this we are going to randomly split
the data into training set (80% for building a predictive model) and evaluation set (20% for evaluating the
model).

As we work through the models we will calculate the usual metrics for model fit, e.g. R2 and RMSE, using
the validation data set, i.e. we will see how well it does at predicting ‘new’ data (out-of-sample validation).

options (warn = -1) # ignore the warnings
require(ggplot2) # input:invalid 可以去掉jupyter 的红色提醒
require(MASS)
require(caret)
require(splines)
require(tidyverse)
require(mgcv)
require(splines2)
Your code contains a unicode char which cannot be displayed in your
current locale and R will silently convert it to an escaped form when the
R kernel executes this code. This can lead to subtle errors if you use
such chars to do comparisons. For more information, please see
https://github.com/IRkernel/repr/wiki/Problems-with-unicode-on-windows
# load the data
data("Boston")
head(Boston)
A data.frame: 6 × 14
crim zn indus chas nox rm age dis rad tax ptratio black lstat medv
<dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
2 0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
3 0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
4 0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
5 0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2
6 0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12 5.21 28.7
# Split the data into training and test sets
set.seed(123)
# createDataPartition( )就是数据划分函数,对象是Boston$medv,p=0.8表示训练数据所占的比例为80%,
# list是输出结果的格式,默认list=FALSE。
training.samples<- Boston$medv%>%
    createDataPartition(p= 0.8, list= FALSE)
train.data<- Boston[training.samples, ]
test.data<- Boston[-training.samples, ]
Your code contains a unicode char which cannot be displayed in your
current locale and R will silently convert it to an escaped form when the
R kernel executes this code. This can lead to subtle errors if you use
such chars to do comparisons. For more information, please see
https://github.com/IRkernel/repr/wiki/Problems-with-unicode-on-windows

First let’s have a look at the relationship between the two variables

ggplot(train.data, aes(x= lstat, y= medv))+
    geom_point()+
    geom_smooth(method= 'loess', formula= y~ x)

在这里插入图片描述

This suggests a non-linear relationship between the two variables.

Linear regression

The standard linear regression model equation can be written as m e d v = β 0 + β 1 ∗ l s t a t medv = \beta_0 + \beta_1 * lstat medv=β0+β1lstat.

# Fit the model
model1<- lm(medv~ lstat, data= train.data)
summary(model1)

Call:
lm(formula = medv ~ lstat, data = train.data)

Residuals:
    Min      1Q  Median      3Q     Max 
-15.218  -4.011  -1.123   2.025  24.459 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  34.6527     0.6230   55.62   <2e-16 ***
lstat        -0.9561     0.0428  -22.34   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.144 on 405 degrees of freedom
Multiple R-squared:  0.5521,	Adjusted R-squared:  0.551 
F-statistic: 499.2 on 1 and 405 DF,  p-value: < 2.2e-16
# Make predictions
predictions<- model1 %>%
    predict(test.data)
# Model performance
model1_performance<- data.frame(
    RMSE= RMSE(predictions, test.data$medv), #均方根误差
    # R平方为回归平方和与总离差平方和的比值,表示总离差平方和中可以由回归平方和解释的比例,
    # 这一比例越大越好,模型越精确,回归效果越显著。R平方介于0~1之间,越接近1,回归拟合效果越好
    R2= R2(predictions, test.data$medv)
)
Y
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Contents List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Statistical definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Probability density function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Statistical moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Expected value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.3 Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Working with samples from a distribution . . . . . . . . . . . . . . . . . . 9 2.3.1 Sample mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3.2 Sample variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3.3 Sample covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 Statistics of random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.1 Sample mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.2 Sample variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4.3 Sample covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.4 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.5 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Analysis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 Scalar case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.1 State-space formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.2 Bayesian formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Extension to spatial dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Basic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.2 Euler–Lagrange equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2.3 Representer solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2.4 Representer matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 x Contents 3.2.5 Error estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.6 Uniqueness of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.7 Minimization of the penalty function. . . . . . . . . . . . . . . . . 23 3.2.8 Prior and posterior value of the penalty function . . . . . . 24 3.3 Discrete form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4 Sequential data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1 Linear Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.1.1 Kalman filter for a scalar case. . . . . . . . . . . . . . . . . . . . . . . 28 4.1.2 Kalman filter for a vector state . . . . . . . . . . . . . . . . . . . . . . 29 4.1.3 Kalman filter with a linear advection equation . . . . . . . . 29 4.2 Nonlinear dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2.1 Extended Kalman filter for the scalar case . . . . . . . . . . . . 32 4.2.2 Extended Kalman filter in matrix form. . . . . . . . . . . . . . . 33 4.2.3 Example using the extended Kalman filter . . . . . . . . . . . . 35 4.2.4 Extended Kalman filter for the mean . . . . . . . . . . . . . . . . 36 4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.3 Ensemble Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.3.1 Representation of error statistics . . . . . . . . . . . . . . . . . . . . 38 4.3.2 Prediction of error statistics . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.3 Analysis scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3.5 Example with a QG model . . . . . . . . . . . . . . . . . . . . . . . . . 44 5 Variational inverse problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1 Simple illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.2 Linear inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.2.1 Model and observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.2 Measurement functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2.3 Comment on the measurement equation . . . . . . . . . . . . . . 51 5.2.4 Statistical hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.2.5 Weak constraint variational formulation . . . . . . . . . . . . . . 52 5.2.6 Extremum of the penalty function . . . . . . . . . . . . . . . . . . . 53 5.2.7 Euler–Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.2.8 Strong constraint approximation . . . . . . . . . . . . . . . . . . . . 55 5.2.9 Solution by representer expansions. . . . . . . . . . . . . . . . . . . 56 5.3 Representer method with an Ekman model . . . . . . . . . . . . . . . . . 57 5.3.1 Inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.2 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5.3.3 Euler–Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3.4 Representer solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.3.5 Example experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.3.6 Assimilation of real measurements . . . . . . . . . . . . . . . . . . . 64 5.4 Comments on the representer method . . . . . . . . . . . . . . . . . . . . . . 67 Contents xi 6 Nonlinear variational inverse problems. . . . . . . . . . . . . . . . . . . . . 71 6.1 Extension to nonlinear dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.1.1 Generalized inverse for the Lorenz equations . . . . . . . . . . 72 6.1.2 Strong constraint assumption . . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3 Solution of the weak constraint problem. . . . . . . . . . . . . . 76 6.1.4 Minimization by the gradient descent method . . . . . . . . . 77 6.1.5 Minimization by genetic algorithms . . . . . . . . . . . . . . . . . . 78 6.2 Example with the Lorenz equations . . . . . . . . . . . . . . . . . . . . . . . . 82 6.2.1 Estimating the model error covariance . . . . . . . . . . . . . . . 82 6.2.2 Time correlation of the model error covariance . . . . . . . . 83 6.2.3 Inversion experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7 Probabilistic formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.1 Joint parameter and state estimation . . . . . . . . . . . . . . . . . . . . . . 95 7.2 Model equations and measurements . . . . . . . . . . . . . . . . . . . . . . . . 96 7.3 Bayesian formulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 7.3.1 Discrete formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.3.2 Sequential processing of measurements . . . . . . . . . . . . . . . 99 7.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8 Generalized Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.1 Generalized inverse formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.1.1 Prior density for the poorly known parameters . . . . . . . . 103 8.1.2 Prior density for the initial conditions . . . . . . . . . . . . . . . . 104 8.1.3 Prior density for the boundary conditions . . . . . . . . . . . . 104 8.1.4 Prior density for the measurements . . . . . . . . . . . . . . . . . . 105 8.1.5 Prior density for the model errors . . . . . . . . . . . . . . . . . . . 105 8.1.6 Conditional joint density . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 8.2 Solution methods for the generalized inverse problem . . . . . . . . 108 8.2.1 Generalized inverse for a scalar model . . . . . . . . . . . . . . . . 108 8.2.2 Euler–Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.2.3 Iteration in α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.2.4 Strong constraint problem . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.3 Parameter estimation in the Ekman flow model . . . . . . . . . . . . . 113 8.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9 Ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.2 Linear ensemble analysis update . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.3 Ensemble representation of error statistics . . . . . . . . . . . . . . . . . . 122 9.4 Ensemble representation for measurements. . . . . . . . . . . . . . . . . . 124 9.5 Ensemble Smoother (ES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.6 Ensemble Kalman Smoother (EnKS) . . . . . . . . . . . . . . . . . . . . . . . 126 9.7 Ensemble Kalman Filter (EnKF) . . . . . . . . . . . . . . . . . . . . . . . . . . 129 xii Contents 9.7.1 EnKF with linear noise free model . . . . . . . . . . . . . . . . . . . 129 9.7.2 EnKS using EnKF as a prior. . . . . . . . . . . . . . . . . . . . . . . . 130 9.8 Example with the Lorenz equations . . . . . . . . . . . . . . . . . . . . . . . . 131 9.8.1 Description of experiments . . . . . . . . . . . . . . . . . . . . . . . . . 131 9.8.2 Assimilation Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 9.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10 Statistical optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.1 Definition of the minimization problem. . . . . . . . . . . . . . . . . . . . . 139 10.1.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.1.3 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.1.4 Cost function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.2 Bayesian formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.3 Solution by ensemble methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 10.3.1 Variance minimizing solution . . . . . . . . . . . . . . . . . . . . . . . 144 10.3.2 EnKS solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 10.4 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 10.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11 Sampling strategies for the EnKF. . . . . . . . . . . . . . . . . . . . . . . . . . 157 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11.2 Simulation of realizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 11.2.1 Inverse Fourier transform. . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.2.2 Definition of Fourier spectrum . . . . . . . . . . . . . . . . . . . . . . 159 11.2.3 Specification of covariance and variance . . . . . . . . . . . . . . 160 11.3 Simulating correlated fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.4 Improved sampling scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.5.1 Overview of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 11.5.2 Impact from ensemble size . . . . . . . . . . . . . . . . . . . . . . . . . . 170 11.5.3 Impact of improved sampling for the initial ensemble . . 171 11.5.4 Improved sampling of measurement perturbations. . . . . . 171 11.5.5 Evolution of ensemble singular spectra . . . . . . . . . . . . . . . 173 11.5.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 12 Model errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 12.1 Simulation of model errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 12.1.1 Determination of ρ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 12.1.2 Physical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 12.1.3 Variance growth due to the stochastic forcing.. . . . . . . . . 176 12.1.4 Updating model noise using measurements. . . . . . . . . . . . 180 12.2 Scalar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 12.3 Variational inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 12.3.1 Prior statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Contents xiii 12.3.2 Penalty function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12.3.3 Euler–Lagrange equations . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12.3.4 Iteration of parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 12.3.5 Solution by representer expansions. . . . . . . . . . . . . . . . . . . 183 12.3.6 Variance growth due to model errors . . . . . . . . . . . . . . . . . 184 12.4 Formulation as a stochastic model . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.5 Examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 12.5.1 Case A0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 12.5.2 Case A1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 12.5.3 Case B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 12.5.4 Case C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12.5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 13 Square Root Analysis schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 13.1 Square root algorithm for the EnKF analysis . . . . . . . . . . . . . . . . 195 13.1.1 Updating the ensemble mean . . . . . . . . . . . . . . . . . . . . . . . 196 13.1.2 Updating the ensemble perturbations . . . . . . . . . . . . . . . . 196 13.1.3 Randomization of the analysis update . . . . . . . . . . . . . . . . 197 13.1.4 Final update equation in the square root algorithms . . . 200 13.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 13.2.1 Overview of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 13.2.2 Impact of the square root analysis algorithm. . . . . . . . . . 203 14 Rank issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14.1 Pseudo inverse of C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 14.1.1 Pseudo inverse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 14.1.2 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 14.1.3 Analysis schemes using the pseudo inverse of C . . . . . . . 209 14.1.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 14.2 Efficient subspace pseudo inversion . . . . . . . . . . . . . . . . . . . . . . . . 212 14.2.1 Derivation of the subspace pseudo inverse . . . . . . . . . . . . 212 14.2.2 Analysis schemes based on the subspace pseudo inverse 216 14.2.3 An interpretation of the subspace pseudo inversion . . . . 217 14.3 Subspace inversion using a low-rank C . . . . . . . . . . . . . . . . . . . . 218 14.3.1 Derivation of the pseudo inverse . . . . . . . . . . . . . . . . . . . . . 218 14.3.2 Analysis schemes using a low-rank C . . . . . . . . . . . . . . . 219 14.4 Implementation of the analysis schemes . . . . . . . . . . . . . . . . . . . . 220 14.5 Rank issues related to the use of a low-rank C . . . . . . . . . . . . . 221 14.6 Experiments with m N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 14.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 xiv Contents 15 An ocean prediction system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 15.2 System configuration and EnKF implementation . . . . . . . . . . . . 232 15.3 Nested regional models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 15.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 16 Estimation in an oil reservoir simulator . . . . . . . . . . . . . . . . . . . . 239 16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 16.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 16.2.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 16.2.2 State vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 16.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 16.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 A Other EnKF issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 A.1 Local analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 A.2 Nonlinear measurements in the EnKF . . . . . . . . . . . . . . . . . . . . . . 251 A.3 Assimilation of non-synoptic measurements . . . . . . . . . . . . . . . . 253 A.4 Time difference data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 A.5 Ensemble Optimal Interpolation (EnOI) . . . . . . . . . . . . . . . . . . . . 255 A.6 Chronology of ensemble assimilation developments . . . . . . . . . . . 255 A.6.1 Applications of the EnKF . . . . . . . . . . . . . . . . . . . . . . . . . . 255 A.6.2 Other ensemble based filters . . . . . . . . . . . . . . . . . . . . . . . . 264 A.6.3 Ensemble smoothers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 A.6.4 Ensemble methods for parameter estimation . . . . . . . . . . 264 A.6.5 Nonlinear filters and smoothers . . . . . . . . . . . . . . . . . . . . . 265 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .277

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值