(个人复习用)概率论重点(待补充)

本文详述了概率论中的基本概念,包括随机试验、互斥与对立事件、频率、超几何分布、抽签问题以及伯努利概型。进一步探讨了随机变量的分类、性质、分布函数、连续性随机变量的特性以及常见的离散型和连续型随机变量分布,如二项分布、泊松分布、几何分布和正态分布。此外,还涵盖了二维随机变量的概念,如独立性和条件分布,以及随机变量的数字特征,如期望和方差。
摘要由CSDN通过智能技术生成

文章目录

一、随机事件与概率

1.1 基本概念

1.1.1 随机试验

  1. 可在相同条件下重复进行
  2. 每次结果不止一个,但可以事先明确所有可能结果
  3. 每次不能确定哪一个出现

1.1.2 互不相容(互斥,无法同时发生)

A ∩ B = ∅ A\cap B=\emptyset AB=( A B = ∅ AB=\emptyset AB=)

1.1.3 对立事件(逆事件)

A ∪ B = S , A B = ∅ A\cup B=S,AB=\emptyset AB=S,AB=

  1. A A A A ‾ \overline{A} A为对立事件
  2. 对立事件也是互斥的,但反过来不一定对

1.1.4 频率

  1. 非负性(任意事件频率不为负)
  2. 规范性(必然事件频率为1)
  3. 有限可加性(对于两两不互斥的一系列事件,其并集发生概率为其频率之和)
    P ( ∅ ) = 0 P(\emptyset)=0 P()=0

1.1.5 超几何分布

N个物品里有M个特定物品,拿出k个,求有i个的概率。

P = ( m i ) ( n k − i ) ( n + m k ) P=\frac{\tbinom{m}{i}\tbinom{n}{k-i}}{\tbinom{n+m}{k}} P=(kn+m)(im)(kin)
k < 0 k<0 k<0 k > n k>n k>n时,规定 ( n k ) = 0 \tbinom{n}{k}=0 (kn)=0

1.1.6 抽签问题(顺序不影响概率)

1.1.7 先验概率-后验概率

分别代表 P ( B ) , P ( B ∣ A ) P(B),P(B\mid A) P(B),P(BA)

1.1.8 独立性

  1. P ( B ∣ A ) = P ( B ) , P ( A ∣ B ) = P ( A ) P(B\mid A)=P(B),P(A\mid B)=P(A) P(BA)=P(B),P(AB)=P(A)
       ⟹    P ( A B ) = P ( A ) P ( B ) \implies P(AB)=P(A)P(B) P(AB)=P(A)P(B)
  2. A A A B B B相互独立,则 A A A B ‾ \overline{B} B A ‾ \overline{A} A B B B A ‾ \overline{A} A B ‾ \overline{B} B相互独立。
  3. P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P ( A B C ) = P ( A ) P ( B ) P ( C )    ⟹    A , B , C P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C)\implies A,B,C P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C),P(ABC)=P(A)P(B)P(C)A,B,C相互独立(可推广至n元)

1.1.9 伯努利概型(二项分布,X~B(n,p))

对于某个试验只有两种可能结果,成功为概率为 p p p,重复做 n n n次,有 k k k次的概率

P ( X = k ) = ( n k ) p k ( 1 − p ) n − k ( 0 ≤ k ≤ n ) P(X=k)=\tbinom{n}{k}p^k(1-p)^{n-k}(0\leq k \leq n) P(X=k)=(kn)pk(1p)nk(0kn)

1.2 基本性质

  1. A ∪ B = B ∪ A , A ∩ B = B ∩ A A\cup B=B\cup A,A\cap B=B\cap A AB=BA,AB=BA(交换律)
  2. A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C A\cup(B\cup C)=(A\cup B)\cup C A(BC)=(AB)C(结合律)
  3. A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) A\cup (B \cap C)=(A \cup B) \cap (A \cup C) A(BC)=(AB)(AC)
    A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A\cap (B \cup C)=(A \cap B) \cup (A \cap C) A(BC)=(AB)(AC)(分配律)
  4. A ∪ B ‾ = A ‾ ∩ B ‾ \overline{A\cup B}=\overline{A} \cap \overline{ {B}} AB=AB
    A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A\cap B}=\overline{A} \cup \overline{ {B}} AB=AB(De Morgan法则)
    ∪ n ≥ 1 A n ‾ = ∩ n ≥ 1 A n ‾ \overline{\cup_{n\geq 1}{A_{n}}}=\cap_{n\geq 1}{\overline{A_{n}}} n1An=n1An
    ∩ n ≥ 1 A n ‾ = ∪ n ≥ 1 A n ‾ \overline{\cap_{n\geq 1}{A_{n}}}=\cup_{n\geq 1}{\overline{A_{n}}} n1An=n1An(De Morgan法则推广)

1.3计算用公式

  1. P ( A − B ) = P ( A ) − P ( A B ) = P ( A B ‾ ) P(A-B)=P(A)-P(AB)=P(A\overline{B}) P(AB)=P(A)P(AB)=P(AB)(减法)
  2. P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)(加法、二元容斥,可推广)
  3. P ( ∪ i = 1 n A i ) ≤ ∑ i = 1 n P ( A i ) P(\cup_{i=1}^{n}A_{i})\leq \sum_{i=1}^{n}P(A_i) P(i=1nAi)i=1nP(Ai)(次可加性,等号成立为两两互斥)
  4. P ( B ∣ A ) = P ( A B ) P ( A ) P(B\mid A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)(A已经发生时B的概率)
  5. P ( A B ) = P ( B ∣ A ) P ( P ( A ) > 0 ) P(AB)=P(B\mid A)P(P(A)>0) P(AB)=P(BA)P(P(A)>0)(乘法公式)
  6. P ( A ) = ∑ i ∈ I P ( A ∣ B i ) P ( B i ) ( P ( B i ) > 0 ) P(A)=\sum_{i\in I}{P(A\mid B_{i})P(B_{i})}(P(B_{i})>0) P(A)=iIP(ABi)P(Bi)(P(Bi)>0)(全概率公式)
  7. P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j ∈ I P ( A ∣ B j ) P ( B j ) P(B_{i}\mid A)=\frac{P(A\mid B_{i})P(B_{i})}{\sum_{j\in I}{P(A\mid B_{j})}P(B_{j})} P(BiA)=jIP(ABj)P(Bj)P(ABi)P(Bi)(贝叶斯公式)

二、随机变量与其分布

2.1 随机变量

定义样本空间 S S S,如果 X = X ( ω ) X=X(\omega) X=X(ω)是在 S S S上的实值函数一一对应,则 X = X ( ω ) X=X(\omega) X=X(ω)为随机变量
分为离散型随机变量(取值有限或可列无穷)非离散型随机变量(连续性,奇异性)

2.2 离散型随机变量(取值有限或可列无穷)

X x 1 x 2 ⋯ x n ⋯ P p 1 p 2 ⋯ p n ⋯ \begin{array}{c|c} X&x_1&x_2&\cdots&x_n & \cdots\\ \hline P&p_1&p_2&\cdots&p_n & \cdots\\ \end{array} XPx1p1x2p2xnpn

2.2.1性质

  1. ∀ p k > 0 , ∑ k = 1 ∞ p k = 1 \forall p_k>0,\sum_{k=1}^{\infty}{p_k}=1 pk>0,k=1pk=1(充要条件)

2.2.2 常见类型

  1. 单点分布(退化分布): P ( X = c ) = 1 P(X=c)=1 P(X=c)=1

  2. 两点分布(0-1分布): P ( X = k ) = p k ( 1 − p ) 1 − k , ( k = 0 , 1 ) P(X=k)=p^k(1-p)^{1-k},(k=0,1) P(X=k)=pk(1p)1k,(k=0,1)

X 0 1 P 1 − p p \begin{array}{c|c} X&0&1\\ \hline P&1-p&p\\ \end{array} XP01p1p

  1. 二项分布
    见上
    泊松定理(计算近似用,在n很大,p很小时使用):
    l i m n → ∞ ( n k ) p n k ( 1 − p n ) n − k = λ k k ! e − λ lim_{n\to \infty}\tbinom{n}{k}p^{k}_{n}(1-p_{n})^{n-k}=\frac{\lambda ^k}{k!}e^{-\lambda} limn(kn)pnk(1pn)nk=k!λkeλ ( n p n → λ ) (np_n\to \lambda) (npnλ)
  2. 泊松分布(X~P( λ \lambda λ))
    P ( X = k ) = λ k k ! e − λ ( k = 0 , 1 , 2 , . . . ) P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}(k=0,1,2,...) P(X=k)=k!λkeλ(k=0,1,2,...)
  3. 几何分布(某件事第一次发生的次数,X~g( p ))
    P ( X = k ) = p ( 1 − p ) k − 1 k = ( 1 , 2 , . . . ) P(X=k)=p(1-p)^{k-1}k=(1,2,...) P(X=k)=p(1p)k1k=(1,2,...)
    具有无记忆性(已经n次未成功,再m次时概率与之前无关,还是 ( 1 − p ) m (1-p)^m (1p)m
  4. 超几何分布
    见上
  5. 幂律分布
    P { X = k } = C k γ ( γ > 1 , k = 1 , 2 , . . . ) P\{X=k\}=\frac{C}{k^{\gamma}}(\gamma>1,k=1,2,...) P{ X=k}=kγC(γ>1,k=1,2,...)

2.3 随机变量的分布函数(类似前缀和)

F ( x ) = P ( X ≤ x ) F(x)=P(X\leq x) F(x)=P(Xx)
P ( a < X ≤ b ) = F ( b ) − F ( a ) P(a<X\leq b)=F(b)-F(a) P(a<Xb)=F(b)F(a)(如果是连续性随机变量,该式子可以看成定积分)

  1. F ( x ) F(x) F(x)单调不减
  2. 0 ≤ F ( x ) ≤ 1 0\leq F(x) \leq 1 0F(x)1, F ( − ∞ ) = 0 , F ( ∞ ) = 1 F(-\infty)=0,F(\infty)=1 F()=0,F()=1
  3. F ( x ) F(x) F(x)右连续

2.4 连续性随机变量(可以表示为定积分形式)

对于分布函数 F ( x ) F(x) F(x),存在非负可积函数 f ( x ) f(x) f(x) ∀ x ∈ R \forall x \in R xR,有
F ( x ) = ∫ − ∞ x f ( t )   d t F(x)=\int_{-\infty}^{x}{f(t)}\,{\rm d}t F(x)=xf(t)dt
X X X连续性随机变量 f ( x ) f(x) f(x)概率密度

2.4.1 性质&相关定理

  1. 非负性: ∀ x ∈ R , f ( x ) ≥ 0 \forall x \in R,f(x)\geq 0 xRf(x)0
  2. 规范性: ∫ − ∞ ∞ f ( x )   d x = 1 \int_{-\infty}^{\infty}{f(x)}\,{\rm d}x=1 f(x)dx=1
  3. 对于任意实数 a , b ( a ≤ b ) , P ( a < ( ≤ ) X < ( ≤ ) b ) = F ( b ) − F ( a ) a,b(a\leq b),P(a<(\leq)X<(\leq) b)=F(b)-F(a) a,b(ab),P(a<()X<()b)=F(b)F(a)(由第5条得到)
  4. F ( x ) F(x) F(x)连续,且 f ( x ) f(x) f(x) x 0 x_0 x0处连续, f ( x 0 ) = F ′ ( x 0 ) f(x_0)=F'(x_0) f(x0)=F(x0)
  5. P ( X = c ) = 0 P(X=c)=0 P(X=c)=0(c是常数)
    (概率为0的事件不一定是不可能事件,概率为1的事件不一定是必然事件)

2.4.2 常见分布

  1. 均匀分布(等可能性)
    f ( x ) = { 1 b − a a ≤ x ≤ b 0 , x < a   o r   x > b f(x)=\begin {cases} \frac{1}{b-a} & {a\leq x \leq b} \\ 0, & x<a\ or\ x>b \end{cases} f(x)={ ba10,axbx<a or x>b    F ( x ) = { 1 x > b x − a b − a a ≤ x ≤ b 0 , x < a F(x)=\begin {cases} 1 & {x>b} \\ \frac{x-a}{b-a} & {a\leq x \leq b} \\ 0, & x<a \end{cases} F(x)=1baxa0,x>baxbx<a

  2. 指数分布(唯一拥有无记忆性的连续性分布)
    f ( x ) = { λ e − λ x , x ≥ 0 0 , x < 0 f(x)=\begin {cases} \lambda e^{-\lambda x}, & {x \geq 0} \\ 0, & {x<0} \end{cases} f(x)={ λeλx,0,x0x<0    F ( x ) = { 1 − e − λ x , x ≥ 0 0 , x < 0 F(x)=\begin {cases} 1-e^{-\lambda x}, & {x \geq 0} \\ 0, & {x<0} \end{cases} F(x)={ 1eλx,0,x0x<0
    无记忆性: P ( X > t + s ∣ X > s ) = P ( X > t ) P(X>t+s\mid X>s)=P(X>t) P(X>t+sX>s)=P(X>t)
    泊松分布与指数分布的关系???

  3. 柯西分布
    f ( x ) = 1 π ( 1 + x 2 ) ( − ∞ < x < ∞ ) f(x)=\frac{1}{\pi (1+x^2)}(-\infty<x<\infty) f(x)=π(1+x2)1(<x<)
    F ( x ) = 1 π a r c t a n x + 1 2 F(x)=\frac{1}{\pi}arctanx+\frac{1}{2} F(x)=π1arctanx+21

  4. 正态分布(X~N( μ \mu μ, σ 2 \sigma^2 σ2))
    f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( − ∞ < x < ∞ ) f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}(-\infty<x<\infty) f(x)=2π σ1e2σ2(xμ)2(<x<)
    F ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2   d t F(x)=\frac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^{x}{e^{-\frac{(t-\mu)^2}{2\sigma^2}}}\,{\rm d}t F(x)=2π σ1xe2σ2(tμ)2dt
    μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1,为标准正态分布。
    φ ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < ∞ ) \varphi(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}(-\infty<x<\infty) φ(x)=2π 1e2x2(<x<)
    Φ ( x ) = 1 2 π ∫ − ∞ x e − t 2 2   d t \Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}{e^{-\frac{t^2}{2}}}\,{\rm d}t Φ(x)=2π 1xe2t2dt
    Φ ( x ) \Phi(x) Φ(x)具体值可查表。
    在这里插入图片描述

f ( x ) f(x) f(x)性质:

  1. x = μ x=\mu x=μ对称,且 x = μ x=\mu x=μ有最大值 1 2 π σ \frac{1}{\sqrt{2\pi}\sigma} 2π σ1
  2. x = μ ± σ x=\mu \pm \sigma x=μ±σ处有拐点
  3. x → ± ∞ x \to \pm \infty x±时为 x x x轴的渐近线
  4. 固定 σ \sigma σ变化 μ \mu μ,图像会平行移动,故 μ \mu μ位置参数
  5. 固定 μ \mu μ变化 σ \sigma σ,越大图像越扁平,故 σ \sigma σ尺度参数

计算公式

X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1)

  1. Φ ( − u ) = 1 − Φ ( u ) \Phi(-u)=1-\Phi(u) Φ(u)=1Φ(u)
  2. P ( X > u ) = 1 − Φ ( u ) P(X>u)=1-\Phi(u) P(X>u)=1Φ(u)
  3. P ( a < X ≤ b ) = Φ ( b ) − Φ ( a ) P(a<X\leq b)=\Phi(b)-\Phi(a) P(a<Xb)=Φ(b)Φ(a)
  4. P ( ∣ X ∣ < c ) = 2 Φ ( c ) − 1 P(|X|<c)=2\Phi(c)-1 P(X<c)=2Φ(c)1

X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) XN(μ,σ2)

  1. P { a < X ≤ b } = Φ ( b − μ σ ) − Φ ( a − μ σ ) P\{a<X\leq b\}=\Phi(\frac{b-\mu}{\sigma})-\Phi(\frac{a-\mu}{\sigma}) P{ a<Xb}=Φ(σbμ)Φ(σaμ)
  2. P { ∣ X − μ ∣ < σ } = Φ ( 1 ) − Φ ( − 1 ) ≈ 0.6826 P\{|X-\mu|<\sigma\}=\Phi(1)-\Phi(-1)\approx 0.6826 P{ Xμ<σ}=Φ(1)Φ(1)0.6826
  3. P { ∣ X − μ ∣ < 2 σ } = Φ ( 2 ) − Φ ( − 2 ) ≈ 0.9544 P\{|X-\mu|<2\sigma\}=\Phi(2)-\Phi(-2)\approx 0.9544 P{ Xμ<2σ}=Φ(2)Φ(2)0.9544
  4. P { ∣ X − μ ∣ < 3 σ } = Φ ( 3 ) −
  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值