约瑟夫问题

题目:

有一桌人(共N个人)在做一个游戏,其中一个人从1开始报数,报到第M个数的人从桌上离开,然后继续从下一个人开始从1报数,然后直到桌上的人数小于M,游戏终止
请在最短的时间内实现这个过程(如果给每个人编个固定号码的话,要求输出最后剩下的人员编号),写明对应时间复杂度

首先看到这道题,我想大家应该和我一样,都会想到暴力,去解。可想而知暴力的时间复杂度为O(n-m+1)*m 极端情况,复杂度较高。这里我想到用线段树进行优化。

记录当前数到m时,前面(包括本身,已经离开桌子的不算)还有多少人,记录为i。然后,维护线段树,从根节点,找到前面所有叶子节点相加和为i最后一个节点,并置为0,并且维护从根节点到当前节点路径上的所有节点。查找过程为logn,查找了(n-m+1)次,时间复杂度为 (n-m+1)*logn

代码:

线段树优化:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define Max 100010

bool ff[Max];

struct node
{   
    int sum;
}stu[Max];


int build(int root,int star,int end) //建线段树 
{   
    if(star==end)
    {   
        stu[root].sum = 1;
        return stu[root].sum;
    }
    int mid = (star+end)/2;
    int t1 = build(2*root,star,mid);
    int t2 = build(2*root+1,mid+1,end);
    return stu[root].sum = t1+t2;
}


void update(int root,int start,int end,int ss)
{   
    stu[root].sum -= 1;
    if(start==end){
        //printf("start==%d\n",start);
        ff[start] = 1;
        return ;
    }
    int mid = (start+end)/2;
    
    if(stu[2*root].sum >= ss){
        update(2*root,start,mid,ss);
    }
    else 
        update(2*root+1,mid+1,end,ss-stu[2*root].sum);


}

int main()
{
    int n,m;
    memset(ff, 0, sizeof(ff));
    scanf("%d%d",&n,&m);
    if(m > n){
        for(int i = 1;i <= n; i ++){
            if(i==1) printf("%d",i);
            else printf(" %d",i);
        }
        printf("\n");
        return 0;
    }
    build(1,1,n);

    int n_n = n;  // n_n 为当前剔除人后,还剩下多少人
    int remind=0;
    int i,flag=0;
    int sum = 0;

    // i 为当前,数到m时,前面(包括自身)有多少人。
    while(1){
        int start = m-remind;
        int last=start;
        for(i = start;i <= n_n; i=i+m-1){
            //printf("i==%d\n",i);
            update(1,1,n,i);
            last=i;
            n_n--;
            if(++sum == n-m+1){
                flag=1;
                break;
            }

        }
        if(flag) break;

        remind= n_n + 1 - last;   // 一圈,最后还剩下的人数。           
        //remind=i-n_n;             

    }
    for(int i = 1;i<=n;i++){
        if(!ff[i])
            printf("%d ",i);
    }
    printf("\n");
}

暴力:

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int MAX=1010;

bool ff[MAX];
int main()
{
    int n,m;
    scanf("%d%d",&n,&m);

    if(n<m){
        for(int i = 1;i<=n;i++){
            if(i==1) printf("%d",i);
            else  printf(" %d",i);
        }
        printf("\n");
        return 0;
    }
    memset(ff,0,sizeof(ff));
    int i=1,sum=0,num=0;

    while(1)
    {
        if(i > n) i = 1;
        if(!ff[i]) ++sum;
        if(sum==m) {
            ff[i] = 1;
            sum = 0;
            num++;
            if(num == n-m+1)
                break;
        }
        i++;
    }

    for(int i = 1;i<=n;i++){
        if(!ff[i])
            printf("%d ",i);
    }
    printf("\n");
    return 0;


}

由于没有oj然后提交测试,我使用暴力进行测试一下,但是暴力也有可能写错啊QWQ,所有若有大佬发现错误,麻烦告知,谢谢!

有兴趣的可以看一下,下面链接约瑟夫问题的解法:

https://blog.csdn.net/xiaoxi_hahaha/article/details/113036281

但我感觉下面这道题 约瑟夫类型的问题 更值得看:

https://blog.csdn.net/qq_43109561/article/details/89546795

https://blog.csdn.net/u012429555/article/details/89787921

公式推导:https://blog.csdn.net/u011500062/article/details/72855826?utm_medium=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param&depth_1-utm_source=distribute.pc_relevant_t0.none-task-blog-BlogCommendFromMachineLearnPai2-1.channel_param

题目:

每年六一儿童节,牛客都会准备一些小礼物去看望孤儿院的小朋友,今年亦是如此。HF作为牛客的资深元老,自然也准备了一些小游戏。其中,有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0...m-1报数....这样下去....直到剩下最后一个小朋友,可以不用表演,并且拿到牛客名贵的“名侦探柯南”典藏版(名额有限哦!!^_^)。请你试着想下,哪个小朋友会得到这份礼品呢?(注:小朋友的编号是从0到n-1)
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值