作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。
输入格式:
输入第一行给出4个正整数N、M、S、D,其中N(2<=N<=500)是城市的个数,顺便假设城市的编号为0~(N-1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。
输出格式:
第一行输出不同的最短路径的条数和能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出首尾不能有多余空格。
输入样例:4 5 0 3 20 30 40 10 0 1 1 1 3 2 0 3 3 0 2 2 2 3 2输出样例:
2 60 0 1 3
思路:用distar 首先要理解好distar ,首先要明白dis[]数组存的是到s节点的最短距离,它每次出发都是到s距离最短的节点出发的,和优先队列的bfs有点相似,就是一定要注意distar中的初始化;下面模拟一下:
当标记这个点时,说明就这个点离起始点最近了
从1号点到5号点求最短路,经过distar 的第一次循环,dis[2] = 2, dis[3] = 1,dis[4] = 1,dis[5] = INF,所以第一次走到的点为3号点,把3号点标记,然后再找3号点能到达的点 dis[2] = 2,dis[4] = 1,dis[5] = 3;然后再走4号点,你看 distar的过程:先从1号点走到3号点,再从 1 号点走到4 号点,所以
代码:
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#define INF 0x3f3f3f3f
#define Max 550
#define min(a, b) (a) > (b) ? (b): (a)
typedef unsigned char bool;
int mpp[Max][Max]; // 记录题目中给出城市到城市之间距离
int RescueTeams[Max]; // 记录题目中给出的每个城市的救援队的数目
bool book[Max]; //dijkstra算法中,标记当前城市是否已经在最短路径上
int ShortestDis[Max]; // ShortestDis[i] 记录从start城市,走到i城市的最短距离。
int RescueTeamsTotal[Max]; // RescueTeamsTotal[i] 从start城市,走到i城市的最短距离的情况下,记录能召集的最多的救援队数量
int ShortestPathNum[Max]; // ShortestPathNum[i] 表示从 start城市,到i城市的最短路径有多少条。
int PreviousCity[Max]; // PreviousCity[i] 记录 最短路径上i城市的前驱城市序号。
int n,m,s,d;
/* dijkstra算法 */
void dijkstra()
{
int i,j;
int star = s;
book[star] = 1;
ShortestDis[star] = 0;
RescueTeamsTotal[star] = RescueTeams[star];
/* 从start城市开始走,更新ShortestDis[i]数组 */
for (i = 0; i < n; i ++) {
if (!book[i]&&mpp[star][i]!=INF) {
ShortestDis[i] = mpp[star][i];
ShortestPathNum[i] = 1;
RescueTeamsTotal[i] = RescueTeamsTotal[star] + RescueTeams[i];
PreviousCity[i] = star;
}
}
/* n点的最短距离,最多需要n-1边,所以循环n-1次 */
for (i = 0; i < n - 1; i ++) {
int mi = INF;
for (j = 0; j < n; j ++) {
if (mi > ShortestDis[j] && !book[j]) {
mi = ShortestDis[j];
star = j;
}
}
book[star] = 1;
for (j = 0; j < n ; j++ ) {
if (!book[j]) {
if(ShortestDis[j]>ShortestDis[star]+mpp[star][j]) {
ShortestDis[j] = ShortestDis[star] + mpp[star][j];
RescueTeamsTotal[j] = RescueTeamsTotal[star] + RescueTeams[j];
PreviousCity[j] = star;
ShortestPathNum[j] = ShortestPathNum[star]; //这不该等于1,该等于ShortestPathNum[star];
}
else if (ShortestDis[j] == ShortestDis[star] + mpp[star][j]) {
ShortestPathNum[j] += ShortestPathNum[star]; // 这个非常重要,从起点到该点最短路径的条数;
if (RescueTeamsTotal[star] + RescueTeams[j] > RescueTeamsTotal[j]) {
RescueTeamsTotal[j] = RescueTeamsTotal[star] + RescueTeams[j];
PreviousCity[j] = star;
}
}
}
}
}
}
/* 初始化函数 */
void init()
{
int i,j;
for (i = 0; i < n; i ++) {
for(j = 0; j < n; j ++) {
if(i==j) mpp[i][j] = 0;
else mpp[i][j] = INF;
}
ShortestDis[i] = INF;
book[i] = 0;
ShortestPathNum[i] = 0;
RescueTeamsTotal[i] = 0;
PreviousCity[i] = s;
}
}
int main()
{
int i,j;
int x,y,z;
scanf("%d%d%d%d", &n, &m, &s, &d);
for (i = 0; i < n; i ++) {
scanf("%d", &RescueTeams[i]);
}
init();
for(i = 0; i < m; i ++) {
scanf("%d%d%d", &x, &y, &z);
mpp[x][y] = min(mpp[x][y], z);
mpp[y][x] = mpp[x][y];
}
dijkstra();
printf("%d %d\n",ShortestPathNum[d],RescueTeamsTotal[d]);
int k = d,sum = 0;
int ans[Max]; // 存最短路径的城市序号
while (PreviousCity[k] != k) {
ans[sum++] = k;
k = PreviousCity[k];
}
ans[sum] = s;
for (i = sum; i >= 0; i --) {
if(i==0) printf("%d\n", ans[i]);
else printf("%d ", ans[i]);
}
return 0;
}