图像处理
文章平均质量分 92
大凝的IC进阶之路
如果前方没有路,何不自己开一条
展开
-
ISP——你可以从这里起步(二)
一个完整的ISP pipeline流程已经走完了,运行代码中的isp_basic.m就可以看见文章中的效果,能直接看出来的两个问题是CCM和降噪做的不好,CCM需要标定,也可以借助专业的软件Imatest或者是其他的软件对色卡做色差计算。降噪的问题是力度不够,但是在YUV域做很大的降噪会损失细节,可以考虑在RAW域增加一个降噪和后面的YUV域降噪相互配合。原创 2024-11-13 20:56:46 · 1103 阅读 · 0 评论 -
ISP——你可以从这里起步
这篇是ISP综述,本来应该第一篇就写它,但是当时手里没有足够的文章建立起知识网,所以拖到现在才写,建立知识网是我的学习方法之一,另外两个是战略性放弃和亲自动手。我习惯用matlab,可能有些同学更习惯用C++或者python,我觉得学习算法用什么工具无所谓,用得顺手就行。黑电平(Black Level)这个概念其实在不同的位置有不同的叫法,对于sensor厂家来说,黑电平指的是OB(Optical Black),就是光学上的绝对暗区,处于绝对暗区的像素是不曝光的,OB在sensor中的排列顺序如下图4所示。原创 2024-11-07 19:58:35 · 1205 阅读 · 0 评论 -
图像锐化(Sharp)
图像锐化模块是ISP中的重量级模块,它决定了ISP最终输出的清晰度,该模块一般都在Y域做,紧跟在降噪的后面,把降噪丢失的细节补充回来。原创 2024-10-17 20:40:24 · 934 阅读 · 0 评论 -
去坏点(Defect Correct)
常规思路是直接把RAW图拆成R、G、B三个通道各自独立的三张图,但是在实际应用中,存在G通道不平衡的情况,简单来说光在经过滤镜的时候,由于光的能量会溢出,两个G分量会受到旁别颜色的影响,所以和R同一行的G被标记为Gr,和B同一行的被标记为Gb。效果提升了很多,但是也不算特别优秀,在帽子的羽毛处可以看出检测的结果并不是很好,羽毛处的一些边缘被标记成了坏点,此外,背景区域也有不少坏点漏检测,这说明坏点检测部分还有可以提升的空间,如果加入边缘检测辅助坏点判断,也许可以获得更好的效果。乍一看效果似乎还不错?原创 2024-09-02 16:51:54 · 1167 阅读 · 0 评论 -
第一章 图像降噪
图1是一个特别简单的ISP,只画出了ISP的刚需模块,其中降噪是贯穿ISP的重量级模块,不同的厂家有不同的结构,但是一般来说,ISP中的图像降噪会在RAW域或者是YUV域。在RAW域做降噪的好处是噪声形态没有被改变,此时的噪声还是来自sensor的白噪声,在这个位置做降噪不能开太大的力度,如果降噪力度过大,图像中的边界和细节就会被抹平,会影响图像最终的清晰度,但是不做RAW域降噪也会有问题。回忆一下。原创 2024-07-22 16:39:27 · 1230 阅读 · 0 评论 -
ISP算法 | 黑电平(BLC)
但是在高增益的情况下,OB的均值可能没变,但是方差变大了,这就是说OB的波动变大,此时如果还按照OB的均值来减,就有可能有较多的残余,且RGB分量会有明显的不平衡,后面再受到白平衡(Rgain、Bgain)的影响,图像暗处会偏紫。黑电平(Black Level)这个概念其实在不同的位置有不同的叫法,对于sensor厂家来说,黑电平指的是OB(Optical Black),就是光学上的绝对暗区,处于绝对暗区的像素是不曝光的,OB在sensor中的排列顺序如下图1所示。原创 2024-05-28 20:20:31 · 1306 阅读 · 0 评论 -
颜色空间(三)——RGB、Lab、HSV和YUV
图26中最外面那一圈标记出了光的波长,可以看见不同波长光分布的疏密程度有差别,蓝光和红光要密一些,绿色最稀疏,这意味着颜色的分布并不均匀。我们知道舌形图是XYZ颜色空间映射到X+Y+Z=1平面上的,而XYZ颜色空间是CIE通过颜色匹配实验测试出来的,它代表的是人眼对颜色的感知特性,这一定程度上说明,人眼对颜色的感知是不均匀的。原创 2024-05-26 11:43:37 · 2909 阅读 · 0 评论 -
图像处理算法 | 颜色空间(二)
接上篇内容,。还是强调一下以下内容来自于ICCV 2023的一个PPT,名称为《Understanding the in-camera rendering pipeline & the role of AI and deep learning》。到这里需要解释一下楼主为什么要把颜色空间拿出来写这么多,因为颜色是图像处理的基础。从摄影到算法,从P图到AI,都绕不开颜色,本号是专注ISP的,ISP中的白平衡、CCM、3DLUT、图像增强等模块,都是在和颜色打交道,既然绕不过去,那就只能学。原创 2024-04-29 09:05:51 · 1407 阅读 · 0 评论 -
图像处理算法 | 颜色空间(一)
CIE是这么做的,如图5所示,左边是测试色,右边是匹配色,匹配色是由R、G、B三个基光产生的,然后准备一个观测者,正对着观察颜色(要求视野为2度,这个角度人眼的色锥细胞最集中),然后不断的增加或者减少匹配色的三分量的比例,把这个比例记录下来,就获得了某个颜色的色匹配系数,把可见光的380nm~780nm全观测一遍,就获得了色匹配函数(图6所示)。最后得到的结果是图3中的曲线,注意这里的y轴,y轴代表的是测试光(或参考光)的匹配功率,也就是说,为了匹配参考光,source light需要调整到多大?原创 2024-04-20 10:26:18 · 1255 阅读 · 0 评论 -
ISP算法 | 白平衡(White Balance)
图2中还有一个柠檬,无论在什么光源下,柠檬都是黄色的,可以简单的理解为,如果选定黄色作为色彩平衡的目标,那么柠檬的黄色叠加光源的颜色,此时就很难分辨出光源的真实颜色了,但是如果选择白色,这个问题就不存在了。注意,光源的色温与光源本身的温度是两回事,通常两者是不相同的。也不是所有的色偏都需要被白平衡矫正,有时候色偏会让拍摄的图像呈现独特的氛围感,比如图4所示的这幅图像,给它橘色和蓝色两种不同的光源,得到的图像如图5所示,在暖光源的条件下,图像偏红,感觉更温馨,在冷光源的条件下,图像偏蓝,感觉更清冷。原创 2024-04-13 12:14:02 · 3942 阅读 · 1 评论 -
ISP算法 | Demosaic(二)
按照上述公式做出的结果如图8所示,会发现图像整体的清晰度好了一些,栅栏这里看起来的边缘会锐利一些,伪彩也变淡了一些,但是边缘仍然有很多锯齿,说明需要方向插值,根据上篇文章的介绍的demosaic插值原则,这里要从已知信息更多的G分量入手,坚持不懈的继续改进。R缺少的数据要多一点,除了插值中心点,还需要插值上下和左右的像素,插值公式如(2)所示,需要注意的是,尽量用已知的像素来做插值,不要用插值后的像素做下一次插值,被插值出的像素不一定是准确的,如果再拿来做一次插值,还会引入新的问题。原创 2024-04-01 21:54:09 · 1627 阅读 · 6 评论 -
ISP算法 | Demosaic(一)
关于ISP中demosaic算法的原理及插值基本思路原创 2024-03-20 21:37:33 · 3308 阅读 · 0 评论 -
图像处理算法 | 双边滤波
因为在图像中,有一个空间相似性的概念,当前pixel的亮度和其周围像素的亮度值接近的概率会高一些,离当前像素位置越远,则差异越大,高斯滤波就是基于这个概念设计的。双边的效果虽然好,但是双边的复杂度也很高,为O(Nr2),而且随着窗口r增大,计算量会进一步飙升,有不少论文都提出了改进算法,比如一种3维网格的快速双边算法,这种网格的快速双边算法做RTL硬件实现代价太大,从这里也可以看出来,对实现来说,挑选算法的重要性,有可能改进后复杂度下降了,反而不能硬件实现了。先说结论,双边滤波对孤立点的滤波效果不好。原创 2023-08-31 21:50:01 · 357 阅读 · 0 评论