- 博客(16)
- 收藏
- 关注
原创 Fine-Grained-or-Not
一、开头挺特别的。问题是粗细粒度的主观性很强。为了解决这个新问题,我们首先进行了一项全面的人类研究,我们确认大多数参与者更喜欢多颗粒度的标签,无论他们是否认为自己是专家。然后,我们发现了一个关键的直觉:粗粒度的标签预测会加剧细粒度的特征学习,而细粒度的特征却能改善粗粒度分类器的学习。这一发现使我们能够设计出一个非常简单但却出乎意料地有效的解决方案来解决我们的新问题,即我们(i)利用特定级别的分类头来分离粗粒度特征和细粒度特征,以及(ii)允许细粒度特征参与粗粒度标签预测,这反过来有助于更好地分离。实..
2022-04-19 15:40:58 196
原创 Progressive Co-Attention Network for Fine-grained Visual Classification
一、动机细粒度的视觉分类旨在识别属于同一类别中多个子类别的图像。由于高度混淆的类别之间存在固有的细微差异,因此这是一项具有挑战性的任务。大多数现有方法仅将单个图像作为输入,这可能会限制模型识别来自不同图像的对比线索的能力。在本文中,我们提出了一种有效的方法,称为渐进式共同注意力网络(PCA-Net)来解决这个问题。具体来说,我们通过鼓励同类别图像对内的特征通道之间的互动来计算通道的相似性,以捕捉共同的辨别特征。考虑到互补信息对识别也是至关重要的,我们删除了因通道互动而增强的突出区域,以迫使网络专注于其他
2022-04-19 13:23:28 2501
原创 基于场景文字知识挖掘的细粒度图像识别算法
Knowledge Mining with Scene Text for Fine-Grained Recognition一、研究背景文字是人类传达信息、知识和情感的重要载体,其蕴含了丰富的语义信息。利用文字的语义信息,可以更好地理解图像中的内容。和文档文本不同,场景文字具有稀疏性,通常以少许关键词的形式存在于自然环境中,通过稀疏的关键词,机器难以获取精准的语义。然而,人类能够较为充分地理解稀疏的场景文字,其原因在于,人类具有大量的外部知识库,能够通过知识库来弥补稀疏的场景文字所带来的语义损.
2022-04-19 11:33:17 3207
原创 CVPR2022-QueryDet
1.动机:小目标检测困难,常见做法是用高分辨率的图像去进行检测,但是成本很高。2.思想:先用低分辨率的图片预测到小目标的粗定位;用这些粗位置稀疏引导的高分辨率特征计算出准确的预测结果。3.pipeline4.做法QueryDet提出了Cascade Sparse Query(CSQ)机制,其中Query代表使用前一层(higher-level feature with lower resolution)中传递过来的query来指导本层的小目标检测,再预测出本层的query进一步传递给
2022-04-14 18:32:55 855
原创 Coarse-to-Fine Cascaded Networks with Smooth Predicting for Video Facial Expression Recognition
一、论文地址https://arxiv.org/abs/2203.13052二、数据集Aff-Wild三、任务和动机文章的任务是根据视频中面部的微表情、肌肉等特点来判断情绪。参考以往的工作,情绪主要划分成7个类别,这里算上other就是8类。其中有4种情绪(anger、disgust、fear、sadness)区分的难度比较大,一方面是因为这些数据相对于积极情绪的数据更难获取,另一方面是因为不同的人在标注标签时可能会发生混淆。所以作者提出把这4种情绪打包成negative。.
2022-04-12 20:49:46 442
原创 通过X光片来检测covid-19的级联网络(笔记)
https://arxiv.org/abs/2005.01468一、任务级联网络,输入X光肺部拍片,输出肺部感染情况。二、网络名称Cascade-SEMEnet which is cascaded with SEME-ResNet50 and SEME-DenseNet169. The two cascade networks of Cascade-SEMEnet both adopt large input sizes and SE-Structure and use MoEx and .
2022-04-11 20:22:27 202
原创 加入动态MLP,并且结合了时空信息的多模态细粒度分类
Dynamic MLP for Fine-Grained Image Classification by Leveraging Geographical and Temporal Information
2022-04-11 15:46:53 5252
原创 Self-supervised driven consistency training for annotation efficient histopathology image analysis
自监督驱动的一致性训练用于注释高效的组织病理学图像分析0、摘要在这项工作中,我们通过利用基于两个新策略的任务诊断和特定任务的无标签数据来克服这一挑战:i)一个自我监督的预设任务,利用组织学WSI中的潜在多分辨率上下文线索,为无监督表征学习学习一个强大的监督信号;ii)一个新的师生半监督一致性范式,根据与特定任务无标签数据的预测一致性,学习将预训练的表征有效转移到下游任务。我们在三个组织病理学基准数据集上进行了广泛的验证实验,涉及两个分类和一个基于回归的任务,即肿瘤转移检测、组织类型分类和肿瘤细胞性定
2022-03-14 23:05:04 2726
原创 Unsupervised Domain Adaptation with Variational Approximation for Cardiac Segmentation
Wu F, Zhuang X. Unsupervised domain adaptation with variational approximation for cardiac segmentation[J]. IEEE Transactions on Medical Imaging, 2021, 40(12): 3555-3567.2021年6月发表在TMI上的一篇文章。用VAE(直译:变量逼近法/变量近似法)进行心脏分割的无监督域适应研究。0、简介大多数已有的工作将源域和目标域的图像映.
2022-03-14 22:23:15 3594 1
原创 Dual Path Learning for Domain Adaptation of Semantic Segmentation
Cheng Y, Wei F, Bao J, et al. Dual Path Learning for Domain Adaptation of Semantic Segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021: 9082-9091.动机:在此之前,自监督学习( self-supervised learning,SSL)与风格迁移(image-to..
2022-03-10 17:12:29 2857
原创 语义分割背景下UDA(无监督域自适应)的三个方向
语义分割背景下UDA(无监督域自适应)的三个方向:1、基于对抗学习实际上,AdaptSegNet就是经典的基于对抗学习的域适应方法。这一类的方法训练一个判别器来使得目标域的分布在像素空间或者特征空间上进行对齐(在像素空间上的对齐已经被证明对于语义分割任务而言优于特征空间),从而使得分割模型的性能能从源域泛化到目标域上。除了AdaptSeg之外,这一方向上的经典工作还有:1、Fcns in the wild: Pixel-level adversarial and constraint-based
2022-03-10 15:12:23 4607
原创 Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision
图1: 我们提出了一种两步自监督领域自适应技术用于语义分割。以前的工作只是将分割模型从源域调整到目标域。我们的工作还考虑了从干净的地图到目标域内的噪声地图的适应。然而,从现实世界收集的目标数据具有不同的场景分布;这些分布是由各种因素造成的,例如移动对象、天气条件,这些因素导致目标中存在较大的间隙(域内间隙)。例如,图1所示的目标域中的噪波贴图和干净贴图是同一模型对不同图像的预测。虽然以前的研究仅仅关注于减少域间的差距,但域内差距的问题却没有引起足够的重视。在本文中,我们提出了一种两步域自适应方法来..
2022-03-10 13:11:16 699
原创 ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation(CVPR2019)
Vu T H, Jain H, Bucher M, et al. Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019: 2517-2526.一、动机作者观察到:源域上的监督学习训练出来的模型,.
2022-03-10 12:22:09 1949
原创 ColorMapGAN: Unsupervised Domain Adaptationfor Semantic Segmentation Using Color MappingGenerative
Tasar O, Happy S L, Tarabalka Y, et al. ColorMapGAN: Unsupervised domain adaptation for semantic segmentation using color mapping generative adversarial networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(10): 7178-7193.这是遥感图像处理顶级期刊
2022-03-10 11:48:47 3107 3
原创 FCNs in the Wild: Pixel-level Adversarial and Constraint-based Adaptation
Hoffman J, Wang D, Yu F, et al. Fcns in the wild: Pixel-level adversarial and constraint-based adaptation[J]. arXiv preprint arXiv:1612.02649, 2016.2016年 CVPR这篇论文,是将域适应(DA)用在语义分割上的第一篇论文。其提出通过对语义分割的特征提取器提取出来的特征送入到这个判别器里面,然后通过对齐Global的信息,完成分割任务上的迁移。...
2022-03-04 10:34:11 1575
原创 Learning to Adapt Structured Output Space for Semantic Segmentation(2018 CVPR)
Tsai Y H, Hung W C, Schulter S, et al. Learning to adapt structured output space for semantic segmentation[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 7472-7481.摘要基于卷积神经网络的语义分割方法依赖于对像素级gt的监督,但可能不能很好地推广到未见过的图
2022-03-03 12:15:25 1885
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人