//这个题本蒟蒻的思想是先将数字的转化规则转化为一张有向图,因为数据量小(10*10)所以使用了邻接矩阵来储存
//废话不多说,上代码
#include<stdio.h>
#include<string.h>
int g[10][10],sum=0,b[10],ans[101],k=0;//g是图,sum表示每一位的可能性。根据乘法原理,最终的可能性就等于每一位的可能性之积。但本题数据量较大,所以需要使用高精度乘法。
void dfs(int num){//深搜
int flag=1;
if(!b[num]){//如果这个点没有搜过,答案+1
b[num]=1;
sum++;
}else{
return;
}
for(int i=0;i<=9;i++){//搜索有无相连的节点
if(g[num][i]==1){
flag=0;
g[num][i]=0;//表示走过这条边
dfs(i);//递归
g[num][i]=1;//回溯
}
}
}
void sq(int base){//高精度×低精度
for(int i=0;i<=k;i++){
ans[i]*=base;
}
void flatten();
flatten();
}
void flatten(){//展平
for(int i=0;i<=2*k+1;i++){//这里高精度写的比较偷懒
int temp=ans[i]/10;
ans[i]%=10;
ans[i+1]+=temp;
}
while(ans[k]){
k++;
}
}
int main(){
memset(g,0,sizeof(g));
memset(ans,0,sizeof(ans));//初始化
char a[1001];
scanf("%s",a);
int n,x1,y1;
scanf("%d",&n);
ans[0]=1;
for(int i=1;i<=n;i++){
scanf("%d%d",&x1,&y1);
g[x1][y1]=1;//建立有向图
}
int l=strlen(a);
for(int i=0;i<l;i++){
sum=0;
memset(b,0,sizeof(b));//重新初始化,表示所有数字都没出现过
int tmp=(int)(a[i]-'0');
dfs(tmp);//搜索这一位
sq(sum);
}
for(int i=k-1;i>=0;i--){
printf("%d",ans[i]);
}
}