USACO 1.4.1 Arithmetic Progression

嗯到了第四个section,好吧认真一点。这题NOCOW上有更快的解法,下面也会详细说,估计我这个方法是最慢的一种了。


题目概述:

找等差数列,给定等差数列的长度n,和另一个数q,等差数列要求每一个数都可以表示成 i^2+j^2 , 0<= i,j <= q 的形式。然后输出结果先按等差排序再按首项排序。

算法思想:

我自己的想法概括起来就只有两点,首先预处理一个b数组,记录了这个数能不能写成 i^2+j^2 的形式。

其次就是直接先暴力枚举等差,再暴力枚举首项。枚举到了当即输出就行,因为这个顺序要求就是题目的要求。

当然首项和等差是有范围的,用一点数学知识剪枝就好了。

代码部分:

#include <iostream>
#include <list>
#include <map>
#include <math.h>
#include <string.h>
#include <string>
#include <fstream>
#include <algorithm>
using namespace std;
ifstream fin("ariprog.in");
ofstream fout("ariprog.out");
int n,up_bound;
int b[135017];

int main() {
	fin >> n >> up_bound;
	for (int i = 0; i <= up_bound; i++) {
		for (int j = 0; j <= up_bound; j++) {
			b[i*i + j*j] = 1;
		}
	}
	bool super_flag = false;
	int ma = 2*up_bound*up_bound / (n-1);
	for (int d = 1; d <= ma; d++) {
		int ma_1 = 2*up_bound*up_bound - (n - 1)* d;
		if (ma_1 < 0) ma_1 = 0;
		for (int start = 0; start <= ma_1; start++) {
			bool flag = true;
			for (int i = 0; i < n; i++) {
				if (b[start+i*d] == 0) {
					flag = false;
					break;
				}
			}
			if (flag) {
				super_flag = true;
				fout << start << " " << d << endl;
			}
		}
	}

	if (!super_flag) fout << "NONE" << endl;

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值