1、 堆排序定义
n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质):
(1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ )
若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。
【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。
2、大根堆和小根堆
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。
根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。
注意:
①堆中任一子树亦是堆。
②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。
3、堆排序特点
堆排序(HeapSort)是一树形选择排序。
堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。
4、堆排序与直接插入排序的区别
直 接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比 较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行 了这些比较操作。
堆排序可通过树形结构保存部分比较结果,可减少比较次数。
5、堆排序
堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。
2 堆排序
3 (1)用大根堆排序的基本思想
4 ① 先将初始文件R[1..n]建成一个大根堆,此堆为初始的无序区
5 ② 再将关键字最大的记录R[1](即堆顶)和无序区的最后一个记录R[n]交换,
6 由此得到新的无序区R[1..n-1]和有序区R[n],且满足R[1..n-1].keys≤R[n].key
7 ③ 由于交换后新的根R[1]可能违反堆性质,故应将当前无序区R[1..n-1]调整为堆。
8 然后再次将R[1..n-1]中关键字最大的记录R[1]和该区间的最后一个记录R[n-1]交换,
9 由此得到新的无序区R[1..n-2]和有序区R[n-1..n],且仍满足关系R[1..n- 2].keys≤R[n-1..n].keys,
10 同样要将R[1..n-2]调整为堆。
11 ……
12 直到无序区只有一个元素为止。
13 (2)大根堆排序算法的基本操作:
14 ① 初始化操作:将R[1..n]构造为初始堆;
15 ② 每一趟排序的基本操作:将当前无序区的堆顶记录R[1]和该区间的最后一个记录交换,然后将新的无序区调整为堆(亦称重建堆)。
16 注意:
17 ①只需做n-1趟排序,选出较大的n-1个关键字即可以使得文件递增有序。
18 ②用小根堆排序与利用大根堆类似,只不过其排序结果是递减有序的。
19 堆排序和直接选择排序相反:在任何时刻,堆排序中无序区总是在有序区之前,
20 且有序区是在原向量的尾部由后往前逐步扩大至整个向量为止。
21 */
22
23 // 生成大根堆
24 void HeapAdjust( int SortData[], int StartIndex, int Length)
25 {
26 while ( 2 * StartIndex + 1 < Length)
27 {
28 int MinChildrenIndex = 2 * StartIndex + 1 ;
29 if ( 2 * StartIndex + 2 < Length )
30 {
31 // 比较左子树和右子树,记录最大值的Index
32 if (SortData[ 2 * StartIndex + 1 ] < SortData[ 2 * StartIndex + 2 ])
33 {
34 MinChildrenIndex = 2 * StartIndex + 2 ;
35 }
36 }
37 if (SortData[StartIndex] < SortData[MinChildrenIndex])
38 {
39 // 交换i与MinChildrenIndex的数据
40 int tmpData = SortData[StartIndex];
41 SortData[StartIndex] = SortData[MinChildrenIndex];
42 SortData[MinChildrenIndex] = tmpData;
43 // 堆被破坏,需要重新调整
44 StartIndex = MinChildrenIndex ;
45 }
46 else
47 {
48 // 比较左右孩子均大则堆未破坏,不再需要调整
49 break ;
50 }
51 }
52
53 return ;
54 }
55
56 // 堆排序
57 void HeapSortData( int SortData[], int Length)
58 {
59 int i = 0 ;
60
61 // 将Hr[0,Lenght-1]建成大根堆
62 for (i = Length / 2 - 1 ; i >= 0 ; i – )
63 {
64 HeapAdjust(SortData, i, Length);
65 }
66
67 for (i = Length - 1 ; i > 0 ; i – )
68 {
69 // 与最后一个记录交换
70 int tmpData = SortData[ 0 ];
71 SortData[ 0 ] = SortData[i];
72 SortData[i] = tmpData;
73 // 将H.r[0..i]重新调整为大根堆
74 HeapAdjust(SortData, 0 , i);
75 }
76
77 return ;
78 }
完整的实现代码
public class Heap {
public static void main(String[] args) {
int[] a = { 26, 5, 77, 1, 33, 11, 34, 95, 48 };
Sort(a);
}
public static void Sort(int[] a){
int temp;
int n = a.length;
Display(a);
for(int i = n/2-1;i>=0;i--) //从非叶子节点开始
Adjust(a, i, n); //初始化堆
for(int i = n-1;i > 0;i--){
temp = a[0]; //交换根节点与最后一个叶子节点,要调整的范围减1
a[0] = a[i];
a[i] = temp;
Adjust(a, 0, i); //不断减小长度、 交换、调整
}
Display(a);
}
public static void Adjust(int[] a, int i, int n){ //调整函数,参数含义 代表从哪个节点开始跳着,n代表堆的长度范围
int j = 2*i+1; //从要调整的节点的子节点开始
int temp = a[i]; // temp 记录要调整的节点
while(j<n){ //还有叶子节点怎循环
if(j<n-1 && a[j]<a[j+1]) //保证不越界,选择两子重的较大者
j++;
if(temp >= a[j]) //根节点较大,停止调整
break;
a[(j-1)/2] = a[j]; //子节点较大,本应该交换,但覆盖即可,temp保存着交换后该节点的信息
j = j*2+1; //继续检查子节点是否需要交互,如果越界则表明没有子节点
}
a[(j-1)/2] = temp; //最后停下来的位置上赋上原始节点的值
}
public static void Display(int[] a){ //方便展示所以定义此函数
System.out.println("------------------------");
for(int i=0; i<a.length;i++){
System.out.print(a[i]+" ");
}
System.out.println();
}
}