cuda10.1+cudnn7.6.0+tensorflow-gpu-1.14.0:tensorFlow-gpu安装注意事项

cuda10.1+cudnn7.6.0+tensorflow-gpu-1.14.0:tensorFlow-gpu安装注意事项


今天在配置pycharm环境的时候,一个小项目需要使用GPU(型号1660),所以需要安装tensorFlow-gpu。但是在安装过程中遇到一些小问题,所以来记录一下。

对应版本号

版本号一定要对应上,由于我下载的是cuda10.1。亲测tensorflow-gpu-1.14.0是可以用的。cuda10.0也是可以的。同时cudnn也应该配置相应的版本。若原来有cpu版本的TensorFlow,安装的时候不需要管。

最好用conda指令安装,不要用pip指令安装

conda install tensorflow-gpu==1.14.0

先对环境用activate进行激活,再用conda指令进行安装。安装用pip指令的话会出现很多奇怪的问题。同时用conda指令安装的过程比较缓慢,需要耐心等待。

其他包的安装

在经过了漫长的等待后,在下满心欢喜地跑程序试一试,结果陷入了疯狂uninstall和install其他包的深渊。其中如果不用keras,那就皆大欢喜,是可以跑的。但是用keras一定要对应上相应的版本,这里直接放上我的环境的图,里面有相应的包的版本。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 回答1: OpenCV是一个开源的计算机视觉和机器学习库,可以方便地处理图像和视频。而CUDA(Compute Unified Device Architecture)是由NVIDIA开发的一种并行计算架构,可以加速图形处理器(GPU)上的计算任务。 OpenCV 4.5.1是OpenCV的一个版本,它提供了丰富的功能和算法,用于图像和视频处理、特征提取、目标检测等任务。这个版本可以在Windows 10操作系统上使用,并且可以与Visual Studio 2017集成,提供开发环境和调试工具。 CUDA 10.0是NVIDIA的一个版本,它支持NVIDIA GPU上的并行计算任务。它允许开发人员使用C语言、C++或CUDA自己的扩展语言编写并行计算代码,以加速计算密集型任务。例如,在图像处理中,可以使用CUDA加速OpenCV算法,从而提高计算性能。 而cuDNNCUDA Deep Neural Network library)是NVIDIA专门为深度学习任务开发的一个库。它提供了一组高性能的深度神经网络的基本操作和优化算法,可以与CUDA和OpenCV结合使用。 综上所述,OpenCV 4.5.1可以与CUDA 10.0和cuDNN 7.6.0集成使用。开发者可以在Visual Studio 2017中使用这些工具和库进行图像处理和机器学习任务的开发和优化。通过使用CUDA加速,可以提高计算性能,而cuDNN可以提供深度学习任务所需的算法和操作。 ### 回答2: OpenCV 4.5.1是一个计算机视觉库,用于在计算机视觉和机器学习项目中进行图像和视频处理。VS2017是一个集成开发环境(IDE),用于Windows操作系统上的软件开发。CUDA(Compute Unified Device Architecture)是一个用于GPU计算的并行计算平台和API模型。CUDNN是NVIDIA深度神经网络库,用于在GPU上加速深度学习任务。 在Windows 10上使用VS2017来编译OpenCV 4.5.1,并在CUDA 10.0和CUDNN 7.6.0的支持下进行构建可以提供更好的计算性能和加速。CUDA 10.0提供了与CUDA架构和驱动程序的兼容性,并支持许多NVIDIA GPUCUDNN 7.6.0是基于CUDA的深度神经网络库,可以加速深度学习任务的训练和推理。 使用VS2017编译OpenCV可以让开发者方便地在Windows平台上进行开发和调试。VS2017提供了强大的集成开发环境,它可以帮助开发者编写、调试和测试程序。通过配置CUDA 10.0和CUDNN 7.6.0来支持OpenCV的GPU加速,可以进一步提高图像和视频处理的速度和效率。 总结来说,使用OpenCV 4.5.1、VS2017、Windows 10、CUDA 10.0和CUDNN 7.6.0可以实现在Windows平台上的高效计算机视觉和机器学习开发。这种配置可以提供更好的性能和加速,特别是在需要处理大量图像和视频、进行深度学习任务的情况下。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值