自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(319)
  • 资源 (4)
  • 收藏
  • 关注

原创 warpctc-caffe环境配置相关问题

warpctc-caffe这是一个很古老的项目,到目前位置应该有六七年了,对应的caffe版本也很古老。即便新版本的caffe与较新的cuda兼容也不好。

2022-06-30 21:47:52 185

原创 修改CUDA和GCC软连接版本

2、创建新软链接GCC解决:CMake:不支持的GNU版本–不支持高于8的gcc版本 error – unsupported GNU version! gcc versions later than 8 are not supported!

2022-06-29 11:02:30 357

原创 ffmpeg安装过程记录

Ubuntu ffmpeg安装

2022-06-05 08:58:23 199

原创 关于ubuntu20.04通过Software and updates安装NVIDIA驱动

CUDA

2022-02-04 10:26:25 1517

原创 h-swish激活函数及TensorFlow实现

h-swish激活函数出自MobileNetV3论文(论文链接:https://arxiv.org/abs/1905.02244),该激活函数为了近似swish激活函数。swish激活函数具有:无上界、有下界、平滑、非单调等特点,可使神经网络层具有更丰富的表现能力。但swish函数有个缺点,计算量比较大,其函数表达式如下:式中贝塔为可训练参数。为了适应轻量级网络使用,MobileNetV3作者提出了h-swish函数,该函数使用常见的算子组合而成,因此几乎所有框架都可实现,且在对效果影响不大的条件下使

2021-09-10 12:00:08 1092

原创 ImportError: Unable to import required dependencies: pytz: No module named ‘pytz‘

我的解决办法是直接:pip install pytz如果失败了,可以参考这篇博客:https://blog.csdn.net/qq_39543404/article/details/115398656

2021-08-18 23:38:23 656

原创 RuntimeError: Failed to process string with tex because latex could not be found

按照这篇文章方法操作:pip install latexsudo apt-get install dvipngsudo apt-get install -y texlive texlive-latex-extra texlive-latex-recommended之后,又提示错误:RuntimeError: latex was not able to process the following string: b‘lp‘继续安装:sudo apt install texlive-latex

2021-08-18 23:36:11 1722

原创 RemoveError: ‘setuptools‘ is a dependency of conda and cannot be removed from conda‘s operating envi

今天在windows上用conda创建虚拟环境,然后conda install nb_conda报错:RemoveError: 'requests' is a dependency of conda and cannot be removed from conda's operating environment.RemoveError: 'setuptools' is a dependency of conda and cannot be removed from conda's operating

2021-08-01 19:34:50 608

原创 tf.one_hot()函数

one_hot(indices, depth, on_value=None, off_value=None, axis=None, dtype=None, name=None) Returns a one-hot tensor.tf.one_hot()函数是将input转化为one-hot类型数据输出,举例:classes = 3labels = tf.constant([0,1,0,3,1,2]) output = tf.one_hot(labels,classes)output&

2021-07-08 22:52:51 236

原创 python循环中的break、continue、pass和exit()

目录1、break2、continue3、pass4、exit()1、break执行到该语句时,该语句后面的代码将不再执行,并且不再执行后续的循环过程;2、continue执行到该语句时,该语句后面的代码将不再执行,而是直接进入到下一循环过程;3、pass该语句不执行任何操作,起到占位作用,程序将继续执行该语句后面的代码;4、exit()该语句将直接退出python程序,所以后面的代码都无法执行,在VSCODE中会给出提示,后面的代码都是灰色的。...

2021-06-18 10:25:31 178

原创 jupyter notebook中显示图片的一种方法

如下:%%html<img src='autoimg.jpg', width=400, height=240>其它方法,调用图像处理的三方库进行显示,例如例如常用的PIL、opencv、matplotlib、scikit-image等等。

2021-06-17 16:17:16 1484

原创 caffe的各种数据层和对应的python定义接口以及部署时的修改问题

data层用在训练或测试阶段,为模型提供数据接口,caffe可以接受的数据类型包括数据库类型(如LMDB、LevelDB)、hdf5、内存数据、图片数据等。1、数据库类型该类型数据必须指定数据库文件夹路径,该文件夹内包含一个data.mdb文件和一个lock.mdb文件;还需要指定batch_size.可选参数包括:rand_skip: 在开始的时候,路过某个数据的输入。通常对异步的SGD很有用。backend: 选择是采用LevelDB还是LMDB, 默认是LevelDB.protot

2021-06-08 16:15:46 75

原创 caffe版SSD配置注意问题

论文作者在原版caffe基础上加上了一些别的操作和方法来实现SSD,所以配置caffe时遇到了很多官方caffe 没有的问题,例如src/caffe/util/中的math_functions.cpp文件中的caffe_rng_uniform函数写的不完善,不注释掉’CHECK_LE(a, b)’,则会出现Check failed: a <= b <0 vs -1.19209e-007>错误,注释掉的话,后面训练会出现Data layer prefetch queue empty错误,网上

2021-06-03 00:19:12 97 2

原创 Python2启动jupyter lab报错

错误信息:Could not decode ‘\xe6\x9c\xaa\xe5\x91\xbd\xe5\x90\x8d‘ for unicode trait ‘untitled_notebook‘ of a LargeFileManager instance.解决办法:edit /usr/local/anaconda2/lib/python2.7/site.py file, change the function def setencoding line 481 from if 0 to if 1,

2021-06-02 17:58:22 159

原创 ValueError: Unable to determine SOCKS version from socks://127.0.0.1:2341/

用export方法设置代理后,导致的错误,重置一下代理:unset all_proxy && unset ALL_PROXY

2021-06-01 23:13:15 337

原创 ImportError: No module named google.protobuf.internal

编译caffe时,不是在conda环境下进行的,虽然编译caffepy过程顺利,但在conda环境下导入caffe时报如题错,解决方法:重新安装就行了:pip install protobuf

2021-06-01 23:12:07 381

原创 解决import TensorFlow时“.../.../site-packages/dateutil/tz.py“报错

安装caffe后,结果TensorFlow导入失败,把matplotlib升级以下就可以了:pip install matplotlib --upgrade

2021-05-31 19:47:40 153

原创 Linux中split和cat命令的简单组合使用

先切割,再组装~为了对大文件进行查看或上传、下载操作,可利用split命令实现大文件切割,切割方式有两种,即按行切割或按子文件大小进行切割,实现命令分别如下:split -l 10000 labels.txt #-l,指明按行切割split -b 5m labels.txt labels_ #-b,指明按大小切割切割后的文件,传输结束后,要重新组装到一起:cat log_* > labels.text...

2021-05-23 19:18:27 332

原创 Ubuntu下将一个文件压缩为多个分卷并解压恢复

深度学习领域用到的数据集动辄几十上百G,在服务器上传和下载都不太方便,可以利用tar将大的数据集文件切分为多个分卷,在进行下载或上传:切分压缩:这里用到了两个命令:tar和split,分别实现文件压缩和文件切割tar czf - train.zip | split -b 6000m - train.tar.gz #将训练集切分为大小为6000M的多个分卷解压恢复:这里也用到了两个命令:cat和tar,分别实现分卷组合和解压缩。cat train.tar.gz* | tar -xzv...

2021-05-23 18:59:20 1307

原创 MSB/LSB(big endian/little endian)

目录1、什么事MSB/LSB(big endian/little endian)2、python解析时二进制文件时注意大小端问题3、举例:1、什么事MSB/LSB(big endian/little endian)LSB(Least Significant Bit),意为最低有效位。MSB(Most Significant Bit),意为最高有效位。若MSB=1,则表示数据为负值,若MSB=0,则表示数据为正。两大CPU派系指定的是Motorola的PowerPC系列CPU和Intel的x86系列C

2021-05-17 16:45:03 251

原创 BatchNormalization总结

目录1、Internal Covariate Shift现象1、Internal Covariate Shift现象网络在训练过程中,中间层的权重在不断发生变化,导致该层输出数据的分布发生改变,这种数据分布的改变称为’Internal Covariate Shift’。...

2021-05-13 17:08:05 471

原创 python解析二进制文件以及不同进制数值间的转换

目录1、python解析二进制文件2、不同进制数值间的转换参考文献:1、python解析二进制文件不同类型数据的字节数不同,因此首先要明确不同物理量数据所在的字节位置及其数据类型,python和C语言中不同数据类型对应关系如下,表中standard size一列给出了该类型数据占据的字节个数。用python解析二进制文件的代码示例如下,这里需要注意的是:(1)明确你想解析出来的数据所在的字节范围;(2)明确该数据的数据类型,以避免解析结果错误或字节数不匹配。binFile=open('./

2021-05-12 16:12:05 1862 4

原创 pandas学习笔记---------时间间隔运算

(1)求两个时间的间隔switch_fridge为字符串格式的日期时间列表#按秒计print((pd.Timestamp(switch_fridge[4002]) - pd.Timestamp(switch_fridge[4000])).total_seconds())print((pd.Timestamp(switch_fridge[4002]) - pd.Timestamp(switch_fridge[4000])).seconds)#按天计print((pd.Timestamp(switc

2021-05-07 10:39:02 285

原创 python 字符串大小写转换

str = "You Like coFFee"print(str.upper()) # 把字符中所有小写字母转换成大写字母print(str.lower()) # 把字符中所有大写字母转换成小写字母print(str.capitalize()) # 把字符串的第一个字母改为大写字母,其余改为小写print(str.title()) # 把字符串每个单词的第一个字母改为大写,其余改为小写输出:...

2021-05-07 09:24:30 281

原创 python 去掉字符串头尾及内部指定字符

目录1、去掉头尾字符2、删除字符串中间字符1、去掉头尾字符方法:str.strip(‘指定字符’)举例:字符串为:str_test = ‘444444F:\Datasets\coco\images\val2014’去掉结尾的’val2014’str_test = '444444F:\\Datasets\\coco\\images\\val201444444'str_test = str_test.strip('val2014')str_test输出:注:只要待处理字符串的头

2021-04-30 09:21:40 4653

原创 python 打印类的所有属性和方法

利用dir(obj)方法获得obj对象的所有属性和方法名,返回一个list。for item in dir(top_k_metergroup): print(item)__class____delattr____dict____dir____doc____eq____format____ge____getattribute____getitem____gt____hash____init____init_subclass____le____lt____modul

2021-04-28 10:38:01 4383 4

原创 pandas学习笔记-------时间戳转日期时间型数据

有些项目中时间是以时间戳格式记录的,使用时需要先转换为日期时间型数据,pandas中to_datetime()方法可以很方便实现这个要求:df_2['time'] = pd.to_datetime(df_2['time'],unit='s',origin=pd.to_datetime('1970-01-01 08:00:00'))注意:(1)起始时间要根据实际情况设置,少数情况可能不是’1970-01-01 08:00:00’;(2)单位也要格外注意,默认的单位不是’s’,而很多数据的时间戳单位是

2021-04-27 09:17:04 1291

原创 GoogleNet总结

目录(1)GoogleNet(InceptionV1)(2)GoogleNet中的结构单元(3)InceptionV2(BN-Inception)(4)InceptionV3(分解卷积)(5)InceptionV4,Inception-ResNet(1)GoogleNet(InceptionV1)GoogleNet是用以上的结构单元搭建的,含有两个辅助输出分支。训练时,辅助输出的结果也按一定比例加到损失函数中,而推理时则只留主输出,去掉辅助输出分支后,网络计算量大大降低。辅助输出分支的存在提高了网络训练

2021-04-12 11:17:50 206

原创 感受野知识点总结

VGG论文中提出的几个结论:

2021-04-11 15:26:26 152

原创 onnx2caffe:KeyError: ‘broadcast‘

onnx的 opset version> = 7的gemm函数已经去掉了broadcast参数,而onnx2caffe的_operaters.py文件中是按照opset version< 7的方式进行的转换,所以如果你的onnx版本比较新的话就会报如题所示错误,解决方法:将含有这个参数的判断条件中的相关条件去掉即可,例如:if node.attrs["broadcast"] != 1 or node.attrs["transB"] != 1:直接修改为:if node.attrs["t

2021-04-08 16:31:08 295

原创 Pytorch中nn.Conv2d的dilation

dilation原文解释如下:controls the spacing between the kernel points; alsoknown as the à trous algorithm. It is harder to describe, but this link_has a nice visualization of what :attr:dilation does.原文中也说描述起来有些难度,就是卷积核的各元素间隔开,默认间隔大小为1。如下图所示:...

2021-04-06 22:31:41 1337

原创 tensorflow2.2中定义的ResNet和ResneXt中的bottleneck结构

目录1、论文中提出的ResNet网络结构2、tensorflow中的三种ResNet或ResNeXt结构单元2.1、第一种结构单元2.2 第二种结构单元2.3 第三种结构单元1、论文中提出的ResNet网络结构tensorflow的Keras高级API中定义了50,101和152层的ResNet和ResNeXt,其中的bottlenect结构的实现在后面介绍。ResNet论文中提出的50,101和152层结构如下图所示:可以发现,ResNet网络结构中的五个stage分别将feature map尺

2021-04-05 17:29:58 585 1

原创 记录Ubuntu18.04-cuda10.1-opencv4配置caffe过程

目录1、安装前环境2、准备工作2.1 必要依赖2.2 安装python3-numpy2.3 安装HDF53、安装caffe3.1 下载caffe3.2 编辑Makefile.config3.2.1 取消下面几行注释3.2.2 修改Python版本3.2.3 CUDA_ARCH修改3.2.4 将以下几行注释去掉,并修改值为13.2.5 opencv4相关的修改3.3 进行编译4、测试5、编译pycaffe1、安装前环境cuda10.1Ubuntu18.04Python==3.7opencv42

2021-04-02 16:16:18 418 3

原创 TypeError: ufunc ‘true_divide‘ output (typecode ‘d‘) could not be coerced to provided outp

图片预处理经常用到的一句代码:…… if mode == 'tf': x /= 127.5 x -= 1. if x.ndim == 3: x = np.expand_dims(x, 0) return x if mode == 'custom': x /= 255 if x.ndim == 3: x = np.expand_dims(x

2021-04-01 16:19:32 4470

原创 BF16格式数据

BF16是一种相对较新的浮点数格式,又叫BFloat16或Brain Float16,可以说是专为深度学习创造的。深度学习中一般不需要FP64,FP32这种高精度的浮点格式。虽然这两种浮点格式数据精度高,但也增加了存储成本和处理过程中的时间成本。如果有一种数据格式能解决FP64,FP32这两种数据格式的这两个缺点,同时又能满足一定的精度要求,那无疑会大大提高深度学习模型的推理速度和部署灵活性。这种数据格式就是BF16,使用BF16算法的预测精度与FP32相似,但不如FP32精确(谷歌曾说过,这是因为神经

2021-03-31 22:33:42 5130

原创 Pytorch中loss计算解析

下面是一段Pytorch分类案例代码:running_loss = 0.0running_corrects = 0# Iterate over data.for inputs, labels in dataloaders[phase]: inputs = inputs.to(device) labels = labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward #

2021-03-28 16:52:41 585

原创 yolov4中的route和shortcut层

1、shortcut层shortcut层的输入层一般是两个(目前还没出现多余两个的情况),实现两个张量相加,例如:对应的cfg文件中的层为:#4[convolutional]batch_normalize=1filters=64size=1stride=1pad=1activation=mish#5[convolutional]batch_normalize=1filters=32size=1stride=1pad=1activation=mish#6[convol

2021-03-23 23:00:58 1549 1

原创 修改pytorch和Keras预训练模型路径

目录1、Pytorch预训练模型路径修改2、Keras修改预训练模型位置1、Pytorch预训练模型路径修改Pytorch安装目录下有一个hub.py,改文件指定了预训练模型的加载位置。该文件存在于xxx\site-packages\torch,例如我的存在于“C:\ProgramData\Miniconda3\Lib\site-packages\torch”。打开hub.py文件,找到load_state_dict_from_url函数,其中第二个参数model_dir用于指定权重文件路径:mod

2021-03-23 16:16:46 497

原创 特征金字塔网络总结

CV方向的特征金字塔经历了Featurized image pyramid、Single feature map、Pyramidal feature hierarchy和Feature Pyramid Network(YOLOv3)发展过程。到目前,涌现出了像GFM(ThunderNet)和EFM(CSPNet)等表现更优秀的特征金字塔模型....

2021-03-21 10:12:25 1805

原创 牛顿法和最优化

牛顿法最早的应用是求解方程的根,先来张直观的动图说明求解过程:开始时,先找一个离f(x)零点比较近的点x0,然后做出穿过(x0,f(x0)),且斜率为f(x0)’的直线(即f(x)在x0处的切线),该直线与x轴交点的位置将比x0更接近f(x)零点;然后重复上一步的操作,这样得到的f(x)的切线与x轴交点将会离f(x)零点越来越近,当误差或迭代次数达到一定条件,我们就得到了满足需要精度的f(x)=0解。下一个点与当前点的关系满足:Xn+1 = xn - f(xn)/f’(xn) 【1】*

2021-03-15 10:29:02 156

HexEditor64位.rar

Github最新的64位HexEditor.dll插件,已测试,可正常使用,用于查看二进制和十六进制文件。 使用方法: 在Notepad++安装目录中的plugins文件夹下创建一个文件夹,例如“HexEditor”,将dll文件放进去即可。

2020-04-08

飞行仿真气动力数据机器学习建模方法(作者-中国航天空气动力技术研究院-王超等)

这篇文章主要讲了机器学习在CFD(计算流体力学)领域的跨学科应用,研究方法和角度值得学习,具体内容:基于机器学习思想,提出了一种大空域、宽速域的气动力建模方法.该方法利用飞行仿真弹道数据辨识的气动力数据,采用人工神经网络技术,实现了对高度、速度、姿态和舵偏角等多维度强非线性特性的全弹道气动力数据的高精度逼近.

2019-08-20

MNIST_原始图像数据集.rar

MNIST手写数字数据集,包括训练集和测试集两部分,训练集和测试集的标签分别在train_lables.txt和test_lables.txt两个文件中,序号与手写数字图片相对应,导入后可以转化为相应矩阵。该文档可用来练习制作自己的数据集过程。

2019-08-20

自己编写的BP神经网络解决异或问题代码

自己编写的BP神经网络解决异或问题代码,该代码注释了自己的编程体会,使用了最少的隐含层神经元解决异或问题,很适合新手对BP神经网络的理解。

2019-04-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除