反演与容斥
文章平均质量分 65
Cyhlnj
这个作者很懒,什么都没留下…
展开
-
BZOJ2693jzptab
简单般Bzoj2154: Crash的数字表格Sol增加了数据组数T 推到 ans=∑Nd=1d∗∑⌊Nd⌋i=1μ(i)∗i2∗(⌊Nd∗i⌋+1)∗⌊Nd∗i⌋2∗(⌊Md∗i⌋+1)∗⌊Md∗i⌋2ans=\sum_{d=1}^{N}d*\sum_{i=1}^{\lfloor\frac{N}{d}\rfloor}\mu(i)*i^2*\frac{(\lfloor\frac{原创 2018-01-10 22:40:45 · 359 阅读 · 0 评论 -
Bzoj1042: [HAOI2008]硬币购物
题面传送门Sol容斥原理+背包 处理出所有金币无限制条件凑成jjj元的方案数 考虑计算 ccc只有444种,可以容斥一波 就是无限制的总方案-111个硬币超出限制的方案+222个的-333个的+444个的# include <bits/stdc++.h># define RG register# define IL inline# define Fil...原创 2018-03-27 20:42:31 · 154 阅读 · 0 评论 -
HDU4336:Card Collector(min-max容斥)
题面传送门Sol方法一直接状压就好了# include <bits/stdc++.h># define RG register# define IL inline# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long ll;int n;...原创 2018-03-29 13:55:44 · 671 阅读 · 0 评论 -
Bzoj3309: DZY Loves Math
题面传送门Sol莫比乌斯反演一波就是求 ∑k=1min(a,b)⌊ak⌋⌊bk⌋∑d|kf(d)μ(kd)∑k=1min(a,b)⌊ak⌋⌊bk⌋∑d|kf(d)μ(kd)\sum_{k=1}^{min(a,b)}\lfloor\frac{a}{k}\rfloor\lfloor\frac{b}{k}\rfloor\sum_{d|k}f(d)\mu(\frac{k}{d})前面...原创 2018-04-12 21:04:02 · 216 阅读 · 0 评论 -
CF809E Surprise me!
题意给你一棵nnn 个点的树,每个点有权值 aiaia_i aaa 为一个排列 求 1n(n−1)∑i=1n∑j=1nφ(aiaj)disti,j1n(n−1)∑i=1n∑j=1nφ(aiaj)disti,j\frac{1}{n(n−1)}\sum_{i=1}^{n}\sum_{j=1}^{n}\varphi(a_ia_j)dist_{i,j} n≤200000n≤200000n...原创 2018-05-30 22:37:59 · 257 阅读 · 0 评论 -
Bzoj5019: [Snoi2017]遗失的答案
将 LLL 唯一分解为 p1a1p2a2...pkakp_1^{a_1}p_2^{a_2}...p_k^{a_k}p1a1p2a2...pkak对 G 也分解为 p1b1p2b2...pkbkp_1^{b_1}p_2^{b_2}...p_k^{b_k}p1b1p2b2...pkbk。称 ai,bia_i , b_iai,bi 分别为 pip_ipi 这个质因子幂次...原创 2018-11-02 14:37:22 · 317 阅读 · 0 评论 -
BZOJ3812: 主旋律
传送门Sol考虑容斥强联通图反过来就是一些缩点后的 DAGDAGDAG一个套路就是对出(入)度为 000 的点进行容斥设 gS,hSg_S,h_SgS,hS 分别表示选了奇数个 000 入度和偶数个的,集合为 SSS 的方案数那么通过钦定一个特殊的点 uuu 有gS=∑T⊂S,u∈TfThS−Tg_S=\sum_{T\subset S,u \in T}f_Th_{S-T}gS...原创 2018-12-04 11:02:53 · 328 阅读 · 0 评论 -
BZOJ4833: [Lydsy1704月赛]最小公倍佩尔数
Problem传送门Sol容易得到fn=en−1+fn−1,en−1=fn−1+en−1,f1=e1=1f_n=e_{n-1}+f_{n-1},e_{n-1}=f_{n-1}+e_{n-1},f_1=e_1=1fn=en−1+fn−1,en−1=fn−1+en−1,f1=e1=1那么fn=2×∑i=1n−1fi−fn−1+1f_n=2\times \sum_{i=1}^...原创 2018-11-28 11:06:33 · 206 阅读 · 0 评论 -
有标号的DAG计数系列问题
传送门II设 fif_ifi 表示 iii 个点的答案那么枚举至少 jjj 个点的出度为 000∑j=0i(−1)j(ij)fi−j2(i−j)j=0\sum_{j=0}^{i}(-1)^j\binom{i}{j}f_{i-j}2^{(i-j)j}=0j=0∑i(−1)j(ji)fi−j2(i−j)j=0所以fi=∑j=1i(−1)j+1(ij)fi−j2(i−j)jf_i=\...原创 2018-12-06 17:50:14 · 1299 阅读 · 0 评论 -
Luogu3307:[SDOI2013]项链
传送门求每个珠子的方案数即有序的求三元组 (x,y,z),x,y,z≤a(x,y,z),x,y,z\le a(x,y,z),x,y,z≤a 满足 gcd(x,y,z)=1gcd(x,y,z)=1gcd(x,y,z)=1设 GiG_iGi 表示 iii 个小于等于 aaa 的有序数字,满足 gcd=1gcd=1gcd=1 的方案数容斥得到要求的16(G3+2G2+3G1)\frac{1}...原创 2018-12-26 15:44:00 · 228 阅读 · 0 评论 -
容斥与反演
反演设Fn∑i=0nAn,iGiF_n\sum_{i=0}^{n}A_{n,i}G_iFni=0∑nAn,iGiGn∑i=0nBn,iFiG_n\sum_{i=0}^{n}B_{n,i}F_iGni=0∑nBn,iFi下面的直接带入到上面Fn=∑i=0nAn,i∑j=0iBi,jFj=∑i=0nFi∑j=inAn,jBj,i=FnF_n=\sum_{i=0}^{n}A_{...原创 2018-12-26 19:35:51 · 301 阅读 · 1 评论 -
BZOJ3328: PYXFIB(单位根反演?)
传送门Sol设A=[1110]A=\begin{bmatrix}1 &amp;amp; 1 \\ 1 &amp;amp; 0\end{bmatrix}A=[1110]那么要求的相当于是∑i=0n[k∣i](ni)Ai\sum_{i=0}^{n}[k|i]\binom{n}{i}A^ii=0∑n[k∣i](in)Ai求出其中的 A0,0A_{0,0}A0,0 即可引入单位根(...原创 2018-12-27 21:23:42 · 419 阅读 · 0 评论 -
UOJ450. 【集训队作业2018】复读机
传送门d=1d=1d=1 输出 knk^nknd=2d=2d=2,构造生成函数,就是求(∑i=0∞[2∣i]eii!)k[xn]=(ex+e−x2)k(\sum_{i=0}^{\infty}[2|i]\frac{e^i}{i!})^k[x^n]=(\frac{e^x+e^{-x}}{2})^k(i=0∑∞[2∣i]i!ei)k[xn]=(2ex+e−x)k直接二项式定理展开求 nnn...原创 2018-12-27 22:32:49 · 465 阅读 · 0 评论 -
Luogu 4240:毒瘤之神的考验
传送门Sol分开考虑 φ(ij)\varphi(ij)φ(ij) 中 ijijij 的质因子那么φ(ij)=φ(i)φ(j)gcd(i,j)φ(gcd(i,j))\varphi(ij)=\frac{\varphi(i)\varphi(j)gcd(i,j)}{\varphi(gcd(i,j))}φ(ij)=φ(gcd(i,j))φ(i)φ(j)gcd(i,j)直接莫比乌斯反演设 g(x...原创 2018-12-24 12:47:31 · 286 阅读 · 0 评论 -
BZOJ4815: [Cqoi2017]小Q的表格
传送门重点 111f(a,a+b)a(a+b)=f(a,b)ab=f(a,b−a)a(b−a)=f(a,b&nbsp;mod&nbsp;a)a(b&nbsp;mod&nbsp;a)=f(d,d)d2\frac{f(a,a+b)}{a(a+b)}=\frac{f(a,b)}{ab}=\frac{f(a,b-a)}{a(b-a)}=\frac{f(a,b~mod~a)}{a(b~mod~a)}=\...原创 2018-12-24 16:30:57 · 253 阅读 · 1 评论 -
BZOJ4659:lcm
传送门题目所给的不合法的条件可以转化为∃p,p2∣gcd(a,b)⇔μ(gcd(a,b))≠0\exists p,p^2|gcd(a,b) \Leftrightarrow \mu(gcd(a,b))\ne 0∃p,p2∣gcd(a,b)⇔μ(gcd(a,b))̸=0那么ans=∑a=1A∑b=1B[μ(gcd(i,j))≠0]abgcd(a,b)ans=\sum_{a=1}^{A}\su...原创 2018-12-26 11:40:59 · 223 阅读 · 0 评论 -
BZOJ4671:异或图
传送门直接求连通的不好做,考虑容斥设 gig_igi 表示至少有 iii 个连通块的方案数,fif_ifi 表示恰好有 iii 个的那么gx=∑i=xn{xi}fi&amp;ThickSpace;⟺&amp;ThickSpace;fx=∑i=xn(−1)i−x[xi]gig_x=\sum_{i=x}^{n}\begin{Bmatrix}x \\ i\end{Bmatrix}f_i\if...原创 2018-12-26 22:47:30 · 256 阅读 · 0 评论 -
斯特林数
含义nnn个有区别的球放在mmm个相同的盒子内,要求盒子不为空的方案数 实际上也就是把数nnn拆成mmm个正整数和的方案数 记作S(n,m)S(n,m)S(n, m)性质S(n,0)=S(0,n)=0S(n,0)=S(0,n)=0S(n, 0)=S(0, n)=0,其中n∈Nn∈Nn \in NS(n,k)=0S(n,k)=0S(n, k)=0,其中k&amp;amp;amp;gt;n&amp;amp;amp;gt;=1...原创 2018-02-21 15:00:05 · 640 阅读 · 0 评论 -
能量采集
有点像SDOI仪仗队 注解见代码# include # include # include # include # include # define IL inline# define RG register# define Fill(a, b) memset(a, b, sizeof(a))using namespace std;typedef long long l原创 2017-12-12 19:15:06 · 270 阅读 · 0 评论 -
LightOJ1336 Sigma Function
题意求和运算是一种有趣的操作,它来源于古希腊字母σ,现在我们来求一个数字的所有因子之和。例如σ(24)=1+2+3+4+6+8+12+24=60.对于小的数字求和是非常的简单,但是对于大数字求和就比较困难了。现在给你一个n,你需要求出有多少个数字的σ是偶数。 注:一个数字的σ指这个数的所有因子之和Input输入包含T(TOutput输出一个数字,为所求答案So原创 2018-01-09 10:31:06 · 295 阅读 · 0 评论 -
BZOJ4407 :于神之怒加强版
题面戳我Solans=∑Nd=1dk∗∑⌊Nd⌋i=1μ(i)∗⌊Nd∗i⌋∗⌊Md∗i⌋ans=\sum_{d=1}^{N}d^k*\sum_{i=1}^{\lfloor\frac{N}{d}\rfloor}\mu(i)*\lfloor\frac{N}{d*i}\rfloor*\lfloor\frac{M}{d*i}\rfloor 将d∗i换成S将d*i换成S 原式=∑NS=原创 2018-01-11 15:23:44 · 397 阅读 · 0 评论 -
Bzoj4816: [Sdoi2017]数字表格
题面戳我Sol摆公式: ans=Πni=1Πmj=1f[gcd(i,j)]ans=\Pi_{i=1}^{n}\Pi_{j=1}^{m}f[gcd(i, j)] 考虑每个gcd的贡献,设n 则就是Πnd=1Π⌊nd⌋i=1Π⌊md⌋j=1f[d]∗[gcd(i,j)==1]\Pi_{d=1}^{n}\Pi_{i=1}^{\lfloor\frac{n}{d}\rfloor}原创 2018-01-12 09:41:11 · 265 阅读 · 0 评论 -
Bzoj4804: 欧拉心算
链接 推一下就是∑nk=1⌊nk⌋2∑d|kϕ(d)μ(kd)\sum_{k=1}^{n}\lfloor\frac{n}{k}\rfloor^2\sum_{d|k}\phi(d)\mu(\frac{k}{d}) ∑d|kϕ(d)μ(kd)\sum_{d|k}\phi(d)\mu(\frac{k}{d})线性筛一下就好# include # define RG register# def原创 2018-01-12 14:03:12 · 650 阅读 · 0 评论 -
莫比乌斯反演入门
定理∑d|nμ(d),n=1时为1,n>1时为0\sum_{d|n}\mu(d), n=1时为1,n > 1时为0设F(i)=∑d|if(d)F(i)=\sum_{d|i}f(d) 形式一证明:f(n)=∑d|nμ(d)∑k|ndf(k)=∑d|nf(d)∑k|ndμ(k)f(n)=\sum_{d|n}\mu(d)\sum_{k|\frac{n}{d}}f(k)=\sum_{d|n原创 2017-12-12 22:21:25 · 239 阅读 · 0 评论 -
[SDOI2008]沙拉公主的困惑
题面传送门Sol题目要求∑n!i=1[gcd(i,m!)==1]\sum_{i=1}^{n!}[gcd(i, m!)==1] 设N=n!,M=m!N=n!,M=m!,莫比乌斯反演一波 就变成了∑d|Mμ(d)Nd\sum_{d|M}\mu(d)\frac{N}{d} 因为M|NM|N所以d|Nd|N 而有个定理∑d|Mμ(d)d=φ(M)M\sum_{d|M}\frac原创 2018-01-22 18:38:34 · 267 阅读 · 0 评论 -
BZOJ2820:YY的GCD
Sol推导:nm,p为质数n ans=∑p∑npi=1μ(i)npimpians=\sum_p\sum_{i=1}^{\frac{n}{p}}\mu(i)\frac{n}{pi}\frac{m}{pi} =∑nk=1nkmk∑p|kμ(kp)=\sum_{k=1}^{n}\frac{n}{k}\frac{m}{k}\sum_{p|k}\mu(\frac{k}{p}) ∑p|kμ(k原创 2018-01-15 16:46:37 · 185 阅读 · 0 评论 -
HDU4746: Mophues
题面vjudgeSolans=∑nk=1⌊nk⌋⌊mk⌋∑d|k[f(d)=p]μ(kd)ans=\sum_{k=1}^{n}\lfloor\frac{n}{k}\rfloor\lfloor\frac{m}{k}\rfloor\sum_{d|k}[f(d) 老套路了,不会推可以参看我写的其它题的题解 其中f(d)表示d的素因数个数,可以在线性筛的时候处理出来其中f(d)表示原创 2018-01-15 20:37:46 · 299 阅读 · 0 评论 -
Bzoj3529: [Sdoi2014]数表
题面传送门Sol先不管aa的限制 设f(n)f(n)表示f的约数和(据说是σ据说是\sigma),它是个积性函数(筛法),nmn则题目要求的就是∑ni=1∑mj=1f(gcd(i,j))\sum_{i=1}^{n}\sum_{j=1}^{m}f(gcd(i, j))考虑每个gcdgcd的贡献,∑ni=1f(i)∑⌊ni⌋j=1μ(j)⌊ni∗j⌋⌊mi∗j⌋\sum_{原创 2018-01-17 10:57:47 · 231 阅读 · 0 评论 -
Bzoj2440: [中山市选2011]完全平方数
题面戳我solution考虑二分答案,二分了一个答案n 在n以内,我们需要快速求出题目要我们求的数的个数所以可以用莫比乌斯反演 设f[i]表示只含有i^2不含其它完全平方数的数的个数 g[i]=∑i|dif[d]g[i] = \sum_{i}^{i|d} f[d] 则g[i]表示所有i^2的倍数g[i]=⌊ni2⌋g[i]=\lfloor \frac{n}{i^2}\rfloo原创 2018-01-08 22:03:11 · 376 阅读 · 0 评论 -
Bzoj3930: [CQOI 2015] 选数 & COGS2699: [CQOI 2015] 选数加强版
题面Bzoj COGS加强版Sol非加强版可以枚举AC这里不再讲述设f(i)f(i)表示在[L,H][L, H]取NN个,gcd为igcd为i的方案数 F(i)=∑i|df(d)F(i)=\sum_{i|d}f(d)表示[L,H][L,H]取NN个,gcd为igcd为i的倍数的方案数 易得F(i)=(⌊Hi⌋−⌊L−1i⌋)NF(i)=(\lfloor\fr原创 2018-01-17 15:20:20 · 268 阅读 · 0 评论 -
Bzoj4652: [Noi2016]循环之美
题面传送门Sol设x,y且gcd(x,y)=1设x,y且gcd(x, y)=1若使xy\frac{x}{y}的kk进制小数是纯循环小数 则一定存在某次除法中余数在之前出现过 也就是存在L>0L>0且x≡x∗kL(mod y)x\equiv x*k^L(mod\ y) 而x,y互质x,y互质那么同时乘上x的逆元则kL≡1(mod y)k^L\equiv1(mod\ y)原创 2018-01-17 20:39:49 · 326 阅读 · 0 评论 -
Bzoj2154: Crash的数字表格
题意求ans=∑ni=1∑nj=1lcm(i,j)求ans=\sum_{i=1}^{n}\sum_{j=1}^{n}lcm(i, j) n,mSol原式=∑ni=1∑mj=1i∗jgcd(i,j)原式=\sum_{i=1}^{n}\sum_{j=1}^{m}\frac{i*j}{gcd(i, j)} 假设n 则ans=∑nd=1∑⌊nd⌋i=1∑⌊md⌋j=1d∗i∗j∗[gcd原创 2018-01-09 17:49:51 · 672 阅读 · 0 评论 -
[SDOI2015]约数个数和
Sol首先有个结论 ∑mi=1∑nj=1d(i∗j)=∑mi=1∑nj=1∑x|i∑y|i[gcd(x,y)==1]\sum_{i=1}^{m}\sum_{j=1}^{n}d(i*j)=\sum_{i=1}^{m}\sum_{j=1}^{n}\sum_{x|i}\sum_{y|i}[gcd(x,y)==1] 证明:可以看po姐的博客接着这个式子推 原式=∑x=1n∑y=1m([g原创 2018-01-10 17:27:02 · 232 阅读 · 0 评论 -
【UVA 11426】gcd之和 (改编)
题面∑ni=1∑mj=1gcd(i,j)mod998244353\sum_{i=1}^{n}\sum_{j=1}^m\gcd(i,j)\mod998244353 n,m=107n,mSol简单的一道莫比乌斯反演题原式=∑nd=1d∗∑⌊nd⌋i=1∑⌊md⌋j=1[gcd(i,j)==1]原式=\sum_{d=1}^{n}d*\sum_{i=1}^{\lfloor\frac{n}原创 2018-01-10 20:13:34 · 385 阅读 · 0 评论 -
Bzoj2818: Gcd
题面戳我Sol傻逼题 原式=∑np质数∑⌊np⌋i=1∑⌊mp⌋j=1[gcd(i,j)==1]原式=\sum_{p质数}^{n}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[gcd(i, j)==1] 设f(i)=∑⌊nd⌋i=1∑⌊md⌋j=1[gcd(i,j)=原创 2018-01-10 21:04:24 · 238 阅读 · 0 评论 -
线性筛,积性函数,狄利克雷卷积,常见积性函数的筛法
一些性质积性函数:对于函数f(n)f(n),若满足对任意互质的数字a,b,a∗b=na,b,a*b=n且f(n)=f(a)f(b)f(n)=f(a)f(b),那么称函数f为积性函数。狄利克雷卷积:对于函数f,g,定义它们的卷积为 (f∗g)(n)=∑d|nf(d)g(nd)(f∗g)(n)=\sum_{d|n}f(d)g(\frac{n}{d})。 狄利克雷卷积满足很多性质: 交换律原创 2018-01-11 14:48:47 · 940 阅读 · 0 评论 -
Codeforces 1097 Alex and a TV Show
传送门除了操作 333 都可以 bitsetbitsetbitset现在要维护Ci=∑gcd(j,k)=iAjBkC_i=\sum_{gcd(j,k)=i}A_jB_kCi=gcd(j,k)=i∑AjBk类比 FWTFWTFWT,只要求出 Ai′=∑i∣dAdA&#x27;_i=\sum_{i|d}A_dAi′=∑i∣dAd就可以直接按位相乘了求答案就是莫比乌斯反...原创 2019-01-17 08:51:06 · 355 阅读 · 0 评论