HDU 6296 代码派对

题目

用了二维前缀和,然后解题的思路感觉像是又嵌套了一个二维前缀和,很奇妙欸

用o(n+m^2)可以求出每个格子的覆盖的次数, 可求ans1=∑C(sum[i][j],3),显然这里面有重复的内容。

(1)将每个矩形减去最上面的一条边,求此时的ans2=∑C(sum[i][j],3)

(2)将每个矩形减去最左边的一条边,求此时的ans3=∑C(sum[i][j],3)

(3)将每个矩形同时减去最左边的一条边和最上面的一条边,求此时的ans4=∑C(sum[i][j],3)

ans1-ans2-ans3+ans4即为最终答案,因为此时每个重复了三次的矩形都只剩下了右上角一个方格被计算了

 

代码

#include<iostream>
#include<stdio.h> 
#include<algorithm>
#include<string.h>
#include<vector>
#include<set>
#include<math.h>
#include<queue>
#include<map>
#include<stack>
#define go(i,a,b) for (int (i)=(a);(i)<=(b);(i)++)
#define ll long long
#define N 100005
#define M 1000
using namespace std;

int p[N][5],n;
ll c3[N];
ll sum[M+5][M+5];
ll solve(int dx, int dy){
	memset(sum,0,sizeof(sum));
	ll ans=0;
	go(i,1,n){
		int x=p[i][1],y=p[i][2],xx=p[i][3]+dx,yy=p[i][4]+dy;
		sum[x][y]++;
		sum[x][yy+1]--;
		sum[xx+1][y]--;
		sum[xx+1][yy+1]++;
	}
	go(i,1,M){
		go(j,1,M){
			sum[i][j]+=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
			ans+=c3[sum[i][j]];
		}
	}
	return ans;
}
int main(){
	c3[0]=c3[1]=c3[2]=0;
	go(i,3,N-5){
		c3[i]=(ll)i*(i-1)/2*(i-2)/3;
		//cout<<c3[i]<<endl;
	}
	int T;
	scanf("%d",&T);
	while (T--){
		scanf("%d",&n);
		go(i,1,n){
			go(j,1,4){
				scanf("%d",&p[i][j]);
			}
		}
		ll ans=solve(0,0)-solve(-1,0)-solve(0,-1)+solve(-1,-1);
		printf("%lld\n",ans);
	}
}

前缀和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值