用了二维前缀和,然后解题的思路感觉像是又嵌套了一个二维前缀和,很奇妙欸
用o(n+m^2)可以求出每个格子的覆盖的次数, 可求ans1=∑C(sum[i][j],3),显然这里面有重复的内容。
(1)将每个矩形减去最上面的一条边,求此时的ans2=∑C(sum[i][j],3)
(2)将每个矩形减去最左边的一条边,求此时的ans3=∑C(sum[i][j],3)
(3)将每个矩形同时减去最左边的一条边和最上面的一条边,求此时的ans4=∑C(sum[i][j],3)
ans1-ans2-ans3+ans4即为最终答案,因为此时每个重复了三次的矩形都只剩下了右上角一个方格被计算了
代码
#include<iostream>
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<vector>
#include<set>
#include<math.h>
#include<queue>
#include<map>
#include<stack>
#define go(i,a,b) for (int (i)=(a);(i)<=(b);(i)++)
#define ll long long
#define N 100005
#define M 1000
using namespace std;
int p[N][5],n;
ll c3[N];
ll sum[M+5][M+5];
ll solve(int dx, int dy){
memset(sum,0,sizeof(sum));
ll ans=0;
go(i,1,n){
int x=p[i][1],y=p[i][2],xx=p[i][3]+dx,yy=p[i][4]+dy;
sum[x][y]++;
sum[x][yy+1]--;
sum[xx+1][y]--;
sum[xx+1][yy+1]++;
}
go(i,1,M){
go(j,1,M){
sum[i][j]+=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1];
ans+=c3[sum[i][j]];
}
}
return ans;
}
int main(){
c3[0]=c3[1]=c3[2]=0;
go(i,3,N-5){
c3[i]=(ll)i*(i-1)/2*(i-2)/3;
//cout<<c3[i]<<endl;
}
int T;
scanf("%d",&T);
while (T--){
scanf("%d",&n);
go(i,1,n){
go(j,1,4){
scanf("%d",&p[i][j]);
}
}
ll ans=solve(0,0)-solve(-1,0)-solve(0,-1)+solve(-1,-1);
printf("%lld\n",ans);
}
}
前缀和