博弈论SG函数

Nim游戏

各位大佬可能都玩过。
三堆石子,两位选手A、B,A先手,选择某堆石子中任意多个石子,然后B选。。。最后没石子可选者为败。
再将它从三堆石子推广到n堆呢。
这就是Nim博弈。

先手局面

先手必胜
采取最优策略可以使自己必赢。
就是可以移动到先手必败态的局面。
先手必败
不管怎么走都必输。
就是所有移动都会到先手必败态的局面。

定理

先手必胜,当且仅当各堆石子XOR和不为0。

若为0,不管怎么取石子都会是对手走向先手必胜,所以先手必败。
若不为0,通过最优策略,取到XOR和为0,让对手陷入必败状态。

公平组合游戏(ICG)

条件

不是所有游戏都可以叫ICG。
ICG满足:
1.两名玩家交替行动。
2.合法行动与哪名玩家无关。玩家公平行动,平等游戏。不会说有什么武将技什么的、。。。
3.最后不能移动的玩家为败。

有向图游戏

给一张有向无环图。有唯一起点,唯一棋子,双方交替行动,最终棋子无法行动,则为败者。
ICG的行动也可以转化为有向图游戏,每个局面为结点,每次行动向到达局面连有向边,组成有向图。

SG函数

mex运算

S为一个非负整数集合,mex(S)=min{x} 其中x是不属于S的。属于总集合的。

SG函数

在ICG游戏中,每个节点x出发到达y1,y2,y3,y4……yk。
SG(x)就为x所有后继节点进行mex运算后的结果。
SG(x)=mex{SG(y1),SG(y2),SG(y3),Sg(y4)……SG(yk)}。
先给出另一个ICG游戏吧。一堆石子,两个人轮流取数,只能取0,1或2。最后取完者胜。
取石子游戏的SG函数
x 0 1 2 3 4 5 6 7 8 9 …
g(x) 0 1 2 0 1 2 0 1 2 0 …

SG定理

设G=G1+G2+…+Gn,Gi的SG函数是gi,i=1,2,…,n。那么G的SG函数g(x1,x2,…,xn)=g1(x1)+g2(x2)+…+gn(xn),加法表示Nim和,即不进位的二进制加法(异或)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值