基于深度学习的复杂背景下目标检测研究—论文解读

1. 创新点

  论文主要针对模型训练中出现的正负样本不均衡问题,根据困难样本挖掘原理,在原有的损失函数中引入调制因子,将背景部分视为简单样本,减小背景损失在置信损失中的占比,使得模型收敛更快速,模型训练更充分,从而提高了复杂背景下的目标检测精度。同时,通过构建特征金字塔和融合多层特征图的方式,实现对低层特征图的语义信息融合增强,以提高对小目标检测的精度,从而提高整体的检测精度。

2. 实现方法

  本文检测模型以传统的基础网络VGG16 为基础,并添加深层卷积网络而构成。前部分浅层网络采用卷积神经网络提取图像特征,包括输入层、卷积层和下采样层。后部分深层网络用卷积层代替原始的全连接层。卷积层尺寸逐层递减,分类和定位回归在多尺度特征图上完成。

2.1 引入调制因子的损失函数

  损失函数用来计算模型预测值与真实值的不一致程度。对样本集合(x,y),本文采用了多任务损失函数(Multi-Task Loss Function),可以在损失函数中完成置信度判别和位置回归,两者加权求和,得到最终的损失函数。
在这里插入图片描述

图1 损失函数表达式

  为解决正负样本不平衡问题,本文首先将所有的待训练先验框进行

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值