HDU 4373 Mysterious For

的值

,并且是素数

 

     这个问题有个叫做Lucas的定理,定理描述是,如果

 

     

 

     那么得到

 

     

   

     这样然后分别求,采用逆元计算即可。

 


题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4536

 

题意:给一个集合,一共个元素,从中选取个元素,选出的元素中没有相邻的元素的选法一共有多少种?

 

分析:典型的隔板法,最终答案就是。然后用Lucas定理处理即可。

 

 

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4373

 

题意:for循环嵌套,有两种形式,第一类从1开始到,第二类从上一层循环当前数开始到,第一层一定

     是第一种类型,求总的循环的次数对364875103取余的结果。

 

分析:首先可以看出,每一个第一类循环都是一个新的开始,与前面的状态无关,所以可以把个嵌套分为几个不

     同的部分,每一个部分由第一类循环开始,最终结果相乘即可。剩下的就是第二类循环的问题,假设一个

     层循环,最大到,分析一下得到如下结果

    

     (1)只有一层,则循环次数为

 

     (2)只有前两层,则循环次数为

 

         

 

     (3)只有前三层,则循环次数为

 

         

 

      由此得到结论:第的循环次数为


#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#include<algorithm>
#define ll long long
void gcd(ll a,ll b,ll &d,ll &x,ll &y)
{
    if(b==0) { d=a; x=1; y=0; return; }
    gcd(b,a%b,d,y,x); y-=a/b*x;
}
ll powmod(ll a,ll n,ll m)
{
    ll res=1; for(a%=m;n;n/=2,a=a*a%m) if(n&1) res=res*a%m; return res;
}
ll inv(ll a,ll n)
{
    ll x,y,d; return powmod(a,n-2,n)%n;  //gcd(a,n,d,x,y); return (x+n)%n;
}
const ll mod=364875103;
const ll mod1=97;
const ll mod2=3761599;
const int N=200100;
ll fac1[N+4],fac2[mod2+2];
void facinit(ll fac[],ll mod)
{
    fac[0]=1;
    for(int i=1;i<mod;i++) fac[i]=fac[i-1]*i%mod; //,r[i]=powmod(fac[i],mod-2,mod);
}
ll C(ll n,ll m,ll fac[],ll mod)
{
    if(n<m) return 0;
    return fac[n]*inv(fac[n-m]*fac[m],mod)%mod;
}
ll CC(ll n,ll m,ll fac[],ll mod)
{
    if(m==0) return 1;  ll p=mod;
    return C(n%p,m%p,fac,mod)*CC(n/p,m/p,fac,mod);
}
ll n,m,k;
int main()
{
    facinit(fac1,mod1); facinit(fac2,mod2);
    ll inv2=mod2*inv(mod2,mod1); ll inv1=mod1*inv(mod1,mod2);
    int re; cin>>re; int ca=1;
    while(re--)
    {
        cin>>n>>m>>k;  ll a[43];
        for(int i=0;i<k;i++) cin>>a[i]; a[k]=m;
        ll ans=1;
        for(int i=0;i<k;i++)
        {
            ll t1=CC(a[i+1]-a[i]+n-1,a[i+1]-a[i],fac1,mod1);
            ll t2=CC(a[i+1]-a[i]+n-1,a[i+1]-a[i],fac2,mod2);
            ll tmp=(t1*inv2+t2*inv1)%mod;
            ans=ans*tmp%mod;
        }
        printf("Case #%d: %I64d\n",ca++,ans);
    }
}

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4349

 

题意:中有多少个奇数,其中

 

分析:其实组合数判断奇偶性有一个优美的结论

          

            如果,那么为奇数,否则为偶数

 

            当然本题要判断的组合数很多,所以不能用上述结论,只能另辟蹊径。由于是判断奇偶性,那么就是判断

     是否为1,利用Lucas定理,先把化为二进制,这样它们都是01序列了。我们又知道

     。这样中为0的地方对应的中的位置只有一种可能,那就是0

 

      这样我们可以不用管中为0的地方,只考虑中为1的位置,可以看出,中为1的位置对应的中为0

      或1,其结果都是1,这样答案就是:1<<(二进制表示中1的个数)


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值