USACO 2024年1月铜组 BALANCING BACTERIA(思维、差分)

本文介绍了一种通过差分数组和迭代操作策略,找到将一系列数变为零所需的最少操作次数的方法,适用于IT技术中的算法优化挑战。
摘要由CSDN通过智能技术生成

第三题:BALANCING BACTERIA

标签:思维、差分

题意:给定 n n n个数, a 1 , a 2 , a 3 . . . a n a_1,a_2,a_3...a_n a1,a2,a3...an,每次操作 可以选择数字 L ( 1 < = L < = n ) L(1<=L<=n) L1<=L<=n,并选择增加或者减少。
比如增加的情况,从第 n n n个数开始,第 n n n个数增加 L L L,第 n − 1 n-1 n1个数增加 L − 1 L-1 L1,第 n − 2 n-2 n2个数增加 L − 2 L-2 L2…,依次类推,直到增加值为 0 0 0,再往前就不增加(即第 1 1 1个到第 n − L n-L nL个数不增加值)
求将所有数变成 0 0 0的最少操作次数。( 1 < = n < = 2 ∗ 1 0 5 , 1 0 − 15 < = a i < = 1 0 15 1<=n<=2*10^5,10^{-15}<=a_i<=10^{15} 1<=n<=2105,1015<=ai<=1015

举个例子:比如有两个数 − 1     3 -1\ \ \ 3 1   3
可以先从选择数字 L = 1 L=1 L=1并进行减少,操作 5 5 5次,把序列变成: − 1      − 2 -1\ \ \ \ -2 1    2
然后选择数字 L = 2 L=2 L=2,并进行增加,操作 1 1 1次,把序列变成: 0     0 0\ \ \ 0 0   0。总共 6 6 6次操作。

题解:以样例 2 2 2为例,有 5 5 5个数: 1     3    − 2    − 7     5 1\ \ \ 3 \ \ -2 \ \ -7 \ \ \ 5 1   3  2  7   5
我们维护一个差分数组 b i b_i bi a i − a i − 1 a_i-a_{i-1} aiai1 1     2    − 5    − 5     12 1\ \ \ 2 \ \ -5 \ \ -5 \ \ \ 12 1   2  5  5   12
这个差分数组表示原 a a a数组中相邻两个数的差值,我们额外对 i = 1 i=1 i=1的时候求 b 1 = a 1 − a 0 b_1=a_1-a_0 b1=a1a0 a 0 = 0 a_0=0 a0=0
再对差分数组 b i b_i bi做差分, c i = b i − b i − 1 c_i=b_i-b_{i-1} ci=bibi1 1    1    − 7    0    17 1 \ \ 1 \ \ -7 \ \ 0 \ \ 17 1  1  7  0  17

a i a_i ai: 1     3    − 2    − 7     5 1\ \ \ 3 \ \ -2 \ \ -7 \ \ \ 5 1   3  2  7   5
1 1 1 a i a_i ai − 1   − 2   − 3   − 4   − 5 = > 0     1    − 5    − 11     0 -1\ -2\ -3\ -4 \ -5=> 0\ \ \ 1 \ \ -5 \ \ -11 \ \ \ 0 1 2 3 4 5=>0   1  5  11   0 (操作次数 + 1 +1 +1
2 2 2 a i a_i ai 0   − 1   − 2   − 3   − 4 = > 0     0    − 7    − 14     − 4 0\ -1\ -2\ -3 \ -4=> 0\ \ \ 0 \ \ -7 \ \ -14 \ \ \ -4 0 1 2 3 4=>0   0  7  14   4 (操作次数 + 1 +1 +1
3 3 3 a i a_i ai 0   0   1   2   3 = > 0     0    0    0     17 0\ 0\ 1\ 2 \ 3=> 0\ \ \ 0 \ \ 0 \ \ 0 \ \ \ 17 0 0 1 2 3=>0   0  0  0   17 (操作次数 + 7 +7 +7
4 4 4 a i a_i ai 0   0   0   0   0 = > 0     0    0    0     17 0\ 0\ 0\ 0 \ 0=> 0\ \ \ 0 \ \ 0 \ \ 0 \ \ \ 17 0 0 0 0 0=>0   0  0  0   17 (操作次数 + 0 +0 +0
5 5 5 a i a_i ai 0   0   0   0   − 1 = > 0     0    0    0     0 0\ 0\ 0\ 0 \ -1=> 0\ \ \ 0 \ \ 0 \ \ 0 \ \ \ 0 0 0 0 0 1=>0   0  0  0   0 (操作次数 + 17 +17 +17

我们能够发现每次归 0 0 0的操作次数就是对应 c i c_i ci的绝对值。其实就是对 b i b_i bi进行差分,得到每个对应的后缀需要修改多少。
代码

#include <bits/stdc++.h>
using namespace std;

const int N = 2e5 + 10;
typedef long long ll;
ll a[N], b[N], n, ans = 0;

int main() {
    cin >> n;
    for (int i = 1; i <= n; i++) {
        cin >> a[i];
        b[i] = a[i] - a[i - 1]; // 差分
    }
    for (int i = 1; i <= n; i++) {
        ans += abs(b[i] - b[i - 1]);
    }
    cout << ans << endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值