上海计算机学会 2023年9月月赛 乙组T4 组合数(组合数学)

本文介绍了如何使用组合数学中的C(n,m)公式求解从n个不同数字中取出m个的方案数,特别强调了对1,000,000,007取模以及利用费马小定理计算逆元的重要性,提供了C(n,m)的编程实现

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第四题:T4组合数

标签:组合数学
题意:求组合数 C n m C_n^m Cnm,即从 n n n个不同的数字中取出 m m m个数字的方案数,结果对 1 , 000 , 000 , 007 1,000,000,007 1,000,000,007取模
1 ≤ m ≤ n ≤ 1 0 9 , 1 ≤ m ≤ 1 0 6 1≤m≤n≤10^9,1≤m≤10^6 1mn1091m106
题解:直接通过通项公式 C n m = n ! m ! ( n − m ) ! C_n^m=\frac {n!}{m!(n-m)!} Cnm=m!(nm)!n!,值得注意的是要进行取模,所以得用到逆元 i n v inv inv
费马小定理: a p − 1 ≡ 1 ( m o d   p ) a^{p-1}≡1(mod \ p) ap11(mod p),两边同时除以 a a a a p − 2 ≡ i n v ( a ) ( m o d   p ) a^{p-2}≡inv(a)(mod\ p) ap2inv(a)(mod p),即 i n v ( a ) = a p − 2 ( m o d   p ) inv(a)=a^{p-2}(mod \ p) inv(a)=ap2(mod p),得到 a p − 2 a^{p-2} ap2这部分可以通过快速幂去得到。
代码

#include <bits/stdc++.h>
using namespace std;

typedef long long ll;
const ll p = 1e9 + 7;

ll fast_power(ll a, ll b) {
    ll ans = 1;
    a %= p;
    while (b) {
        if (b & 1) ans = (ans * a) % p;
        a = (a * a) % p;
        b >>= 1;
    }
    return ans;
}

ll C(ll a, ll b) {
    if (b > a) return 0;
    if (a == b) return 1;
    ll ans1 = 1, ans2 = 1;
    for (ll i = 1; i <= b; i++) {
        ans1 = ans1 * (a - i + 1) % p;
        ans2 = ans2 * i % p;
    }
    return ans1 * fast_power(ans2, p - 2) % p;
}

int main() {
    ll n, m;
    cin >> n >> m;
    cout << C(n, m);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值