上海计算机学会 2024年4月月赛 丙组T5 数字迷宫

本文描述了一个关于数字迷宫的问题,利用BFS(广度优先搜索)算法寻找从起点(1,1)到终点(n,m)的最短路径,给出了C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第五题:T5数字迷宫

标签 b f s bfs bfs
题意:给定一个 n n n x m m m的数字迷宫,每个位置有一个数字 a [ i ] [ j ] a[i][j] a[i][j],表示走到该格子之后,可以往上下左右任意方向移动 a [ i ] [ j ] a[i][j] a[i][j]的距离。求从 ( 1 , 1 ) (1,1) (1,1)移动到 ( n , m ) (n,m) (n,m)位置,最少需要走多少次。
题解:裸的 b f s bfs bfs,在基础模板上改下变化的新移动位置即可。
代码

#include <bits/stdc++.h>
using namespace std;

int n, m, a[1005][1005];
int vis[1005][1005];
int dx[4] = {-1, 1, 0, 0};
int dy[4] = {0, 0, -1, 1};

struct node {
    int x, y, step;
};

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
    for (int j = 1; j <= m; j++)
    cin >> a[i][j];

    queue<node> q;
    q.push({1, 1, 0});
    vis[1][1] = 1;

    while (!q.empty()) {
        node cur = q.front();
        if (cur.x == n && cur.y == m) {
            cout << cur.step << endl;
            return 0;
        }
        q.pop();
        for (int i = 0; i < 4; i++) {
            int nx = cur.x + a[cur.x][cur.y] * dx[i];
            int ny = cur.y + a[cur.x][cur.y] * dy[i];
            if (nx < 1 || nx > n || ny < 1 || ny > m) continue;
            if (vis[nx][ny]) continue;
            vis[nx][ny] = 1;
            q.push({nx, ny, cur.step + 1});
        }
    }

    cout << "No Solution" << endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值