数论--P2568 GCD

博客探讨了一个计算1到n之间满足gcd为素数的数对(x,y)的数量问题。通过线性筛欧拉函数优化,实现了O(n)的时间复杂度解决方案。文章详细解释了如何利用欧拉函数和前缀和来优化计算,并指出需要考虑x=y的特殊情况。
摘要由CSDN通过智能技术生成

入口
题意:给定正整数 n n n,求 1 ≤ x ≤ y 1 \leq x \leq y 1xy gcd ⁡ ( x , y ) \gcd(x,y) gcd(x,y)为素数的数对 ( x , y ) (x,y) (x,y) 有多少对。

idea:考虑每一个质数 P 对答案的贡献,设 x ≥ y x \geq y xy如果 g c d ( x , y ) = p gcd(x,y) = p gcd(x,y)=p,那么就有 g c d ( x p , y p ) = 1 gcd( \frac{x}{p} ,\frac{y}{p} ) = 1 gcd(px,py)=1,对于每一个 x p \frac{x}{p} px,贡献就是求小于等于它的数中与它互质的数的个数,这不就是欧拉函数的事情了嘛!
显然有 x p ≤ n p \frac{x}{p} \leq \frac{n}{p} pxpn,那么就是求每一个小于等于 n p \frac{n}{p} pn的 x 的 ϕ ( x ) \phi(x) ϕ(x) 之和.对每一个质数 P 都要求一次,可以用前缀和优化,复杂度 O ( n ) O(n) O(n)

注意此时是 x ≥ y x \geq y xy 的情况,要把答案乘2后减去 x = y x=y x=y 的情况

#include<bits/stdc++.h>
#define LL long long
#define N 10000007
using namespace std;

LL n,pr[N],phi[N],tot = 0,sum[N],ans = 0;
bool pd[N];

void get_phi()//线性筛欧拉函数
{
	memset( pd,false,sizeof(pd) );
	pd[ 1 ] = true;
	phi[1] = 1;
	for(int i=2;i<=10000000;i++)
	{
		if( !pd[i] )
		{
			tot++;
			pr[ tot ] = i;
			phi[i] = (i-1);
		}
		for(int j=1;j<=tot&&i*pr[j]<=10000000;j++)
		{
			pd[ i*pr[j] ] = true;
			if( i%pr[j]==0 )
			{
				phi[ i*pr[j] ] = phi[i] * pr[j];
				break;
			}
			phi[ i*pr[j] ] = phi[i] * (pr[j]-1);
		}
	}
}

void solve()
{
	scanf("%lld",&n);
	for(int i=1;i<=n;i++) sum[i] = sum[i-1] + phi[i];
	for(int j=1;j<=tot&&pr[j]<=n;j++)
	{
		ans += ( sum[ n/pr[j] ]*2 - 1 );
	}
	cout<<ans;
}

int main()
{
	get_phi();
	solve();
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值