数值分析作业2

T 4

解:
(1) x = 5 − x 3 2 x = \frac{5-x^3}{2} x=25x3

ϕ ( x ) = 5 − x 3 2 \phi(x) = \frac{5-x^3}{2} ϕ(x)=25x3 ,当x ∈ [ 1 , 2 ] \in [1,2] [1,2]时有:
ϕ ′ ( x ) = − 3 x 2 2 < 0 \phi^{'}(x) = -\frac{3x^{2}}{2} < 0 ϕ(x)=23x2<0
∣ ϕ ′ ( x ) ∣ = ∣ 3 x 2 2 ∣ ≥ 3 ∗ 1 3 2 = 1.5 > 1 \lvert \phi^{'}(x) \rvert = \lvert \frac{3x^{2}}{2} \rvert \geq \frac{3*1^3}{2} = 1.5 > 1 ϕ(x)=23x22313=1.5>1

固 此 迭 代 式 不 满 足 收 敛 定 理 固此迭代式不满足收敛定理

(2) x = 5 x 2 + 2 x = \frac{5}{x^2+2} x=x2+25

ϕ ( x ) = 5 x 2 + 2 \phi(x) = \frac{5}{x^2+2} ϕ(x)=x2+25 ,当x ∈ [ 1 , 2 ] \in [1,2] [1,2]时有:
ϕ ′ ( x ) = − 10 x ( x 2 + 2 ) 2 < 0 \phi^{'}(x) = -\frac{10x}{(x^2+2)^2} < 0 ϕ(x)=(x2+2)210x<0
∣ ϕ ′ ( 1 ) ∣ = ∣ 10 ( 1 2 + 2 ) 2 ∣ = 10 9 > 1 \lvert \phi^{'}(1) \rvert = \lvert \frac{10}{(1^2+2)^2} \rvert = \frac{10}{9} > 1 ϕ(1)=(12+2)210=910>1
固 此 迭 代 式 不 满 足 收 敛 定 理 固此迭代式不满足收敛定理

(3) x = 5 − 2 x 3 x = \sqrt[3]{ 5-2x } x=352x

ϕ ( x ) = 5 − 2 x 3 , ϕ ′ ( x ) = − 2 3 ∗ ( 5 − 2 x ) 2 3 < 0 , ϕ ( x ) 单 调 递 减 且 ϕ ( 1 ) = 3 3 = 1.44224 , ϕ ( 2 ) = 1 \phi(x) = \sqrt[3]{ 5-2x } ,\phi^{'}(x) = -\frac{2}{ 3 *\sqrt[3]{(5-2x)^2} } < 0{, }\phi(x)单调递减{且}\phi(1) = \sqrt[3]{3} = 1.44224{,}\phi(2) = 1 ϕ(x)=352x ,ϕ(x)=33(52x)2 2<0ϕ(x)ϕ(1)=33 =1.44224ϕ(2)=1
因 此 , 当 x ∈ [ 1 , 2 ] 时 , ϕ ( x ) ∈ [ 3 3 , 1 ] ∈ [ 1 , 2 ] 又 当 x ∈ [ 1 , 2 ] 时 有 : {因此,当}x \in [1,2]{时}{,}\phi(x)\in[ \sqrt[3]{3} , 1 ] \in[1,2]{又当}x\in[1,2]{时有:} x[1,2]ϕ(x)[33 ,1][1,2]x[1,2]:
∣ ϕ ′ ( x ) ∣ = ∣ 2 3 ∗ ( 5 − 2 x ) 2 3 ∣ ≤ 2 3 < 1 \lvert \phi^{'}(x) \rvert = \lvert \frac{2}{ 3 *\sqrt[3]{(5-2x)^2} } \rvert \leq \frac{2}{3} < 1 ϕ(x)=33(52x)2 232<1
由 收 敛 定 理 知 , 迭 代 方 式 x = 5 − 2 x 3 收 敛 由收敛定理知,迭代方式x = \sqrt[3]{ 5-2x }{收敛} x=352x

T 6

解:
令 f ( x ) = 2 x + x − 4 , f ( 1 ) < 0 , f ( 2 ) > 0 , 故 f ( x ) 在 [ 1 , 2 ] 内 有 根 令f(x) = 2^x+x-4 ,f(1)<0,f(2)>0,故f(x)在[1,2]内有根 f(x)=2x+x4,f(1)<0,f(2)>0,f(x)[1,2]

取 ϕ ( x ) = 4 − 2 x , ∣ ϕ ′ ( x ) ∣ = ∣ − 2 x ln ⁡ 2 ∣ > 1 , 所 以 此 迭 代 方 式 不 收 敛 取\phi(x) = 4-2^x, \lvert \phi{'}(x) \rvert = \lvert -2^x\ln2 \rvert >1,所以此迭代方式不收敛 ϕ(x)=42x,ϕ(x)=2xln2>1,

取 ϕ ( x ) = ln ⁡ ( 4 − x ) 1 ln ⁡ 2 对 任 意 x ∈ [ 1 , 2 ] , 有 取\phi(x) = \ln(4-x)\frac{1}{\ln2} 对任意x\in[1,2],有 ϕ(x)=ln(4x)ln21x[1,2],
ϕ ( x ) ∈ [ 1 , ln ⁡ 3 ln ⁡ 2 ] \phi(x) \in [1, \frac{\ln3}{\ln2}] ϕ(x)[1,ln2ln3]
∣ ϕ ′ ( x ) ∣ = ∣ − 1 4 − x 1 ln ⁡ 2 ∣ < 1 4 − 2 1 ln ⁡ 2 < 1 \lvert \phi{'}(x) \rvert = \lvert -\frac{1}{4-x}\frac{1}{\ln2} \rvert < \frac{1}{4-2}\frac{1}{\ln2} < 1 ϕ(x)=4x1ln21<421ln21<1
固 对 迭 代 公 式 x k + 1 = ln ⁡ ( 4 − x k ) 1 ln ⁡ 2 收 敛 固对迭代公式x_{k+1} = \ln(4-x_k)\frac{1}{\ln2}收敛 xk+1=ln(4xk)ln21

T 9

解:
(1) x 3 + 2 x 2 + 10 x − 20 = 0 , x 0 = 2 x^3+2x^2+10x-20 = 0,x_0=2 x3+2x2+10x20=0,x0=2

令 f ( x ) = x 3 + 2 x 2 + 10 x − 20 则 f ′ ( x ) = 3 x 2 + 4 x + 10 令f(x) = x^3+2x^2+10x-20 则f{'}(x) = 3x^2+4x+10 f(x)=x3+2x2+10x20f(x)=3x2+4x+10
牛 顿 迭 代 格 式 为 x k + 1 = x k − x k 3 + 2 x k 2 + 10 x k − 20 3 x k 2 + 4 x k + 10 , 取 x 0 = 2 迭 代 得 牛顿迭代格式为x_{k+1} = x_k - \frac{x_k^3+2x_k^2+10x_k-20}{3x_k^2+4x_{k}+10},取x_0=2迭代得 xk+1=xk3xk2+4xk+10xk3+2xk2+10xk20x0=2

x i x_i xi数值
x 0 x_0 x02.000000000000000
x 1 x_1 x11.466666666666667
x 2 x_2 x21.371512013805921
x 3 x_3 x31.368810222633895
x 4 x_4 x41.368808107822667

取 x ∗ = 1.368808107822667 取x^* = 1.368808107822667 x=1.368808107822667

(2) x 3 − 2 x 2 + x = 0 , x 0 = 1 x^3-2x^2+x=0,x_0=1 x32x2+x=0,x0=1

令 f ( x ) = x 3 − 2 x 2 + x = 0 则 f ′ ( x ) = 3 x 2 − 4 x + 1 令f(x)=x^3-2x^2+x=0则f{'}(x)=3x^2-4x+1 f(x)=x32x2+x=0f(x)=3x24x+1
牛 顿 迭 代 格 式 为 x k + 1 = x k − x k 3 − 2 x k 2 + x k = 0 3 x k 2 − 4 x k + 1 , 取 x 0 = 1 迭 代 得 牛顿迭代格式为x_{k+1} = x_k - \frac{x_k^3-2x_k^2+x_k=0}{3x_k^2-4x_k+1},取x_0=1迭代得 xk+1=xk3xk24xk+1xk32xk2+xk=0,x0=1

x i x_i xi数值
x 0 x_0 x01.000000000000000

T 13

解:
x k + 1 = x k − f ( x k ) f ′ ( x k ) , x k + 1 − x k = − f ( x k ) f ′ ( x k ) x_{k+1} = x_k - \frac{f( x_k )}{f{'}(x_k)},x_{k+1}-x_k = - \frac{f( x_k )}{f{'}(x_k)} xk+1=xkf(xk)f(xk),xk+1xk=f(xk)f(xk)
x k + 1 − x k ( x k − x k − 1 ) 2 = − f ( x k ) f ′ ( x k ) ( x k − x k − 1 ) 2 (1) \frac{x_{k+1}-x_k}{ (x_k - x_{k-1})^2 } = -\frac{ f(x_k) }{ f{'}(x_k)(x_k - x_{k-1})^2 } \tag{1} (xkxk1)2xk+1xk=f(xk)(xkxk1)2f(xk)(1)
由 泰 勒 展 开 式 得 : f ( x k ) = f ( x k − 1 ) + f ′ ( x k − 1 ) ( x k − x k − 1 ) + 1 2 ! f ′ ′ ( ξ ) ( x k − x k − 1 ) 2 (2) 由泰勒展开式得 :f(x_k) = f(x_{k-1}) +f{'}(x_{k-1})(x_k-x_{k-1})+\frac{1}{2!}f{''}( \xi )(x_k-x_{k-1})^2 \tag{2} f(xk)=f(xk1)+f(xk1)(xkxk1)+2!1f(ξ)(xkxk1)2(2)
其 中 ξ ∈ [ x k , x k − 1 ] , 联 立 ( 1 ) ( 2 ) 式 得 : 其中\xi \in[x_k,x_{k-1}],联立(1)(2)式得: ξ[xk,xk1],(1)(2):
x k + 1 − x k ( x k − x k − 1 ) 2 = − 1 2 f ′ ′ ( ξ ) f ′ ( x k ) \frac{x_{k+1}-x_k}{ (x_k - x_{k-1})^2 } = -\frac{1}{2} \frac{ f{''}(\xi) }{ f{'}(x_k) } (xkxk1)2xk+1xk=21f(xk)f(ξ)
即 lim ⁡ k → ∞ x k + 1 − x k ( x k − x k − 1 ) 2 = − 1 2 f ′ ′ ( x ∗ ) f ′ ( x k ) 即 \lim_{k \to \infty} \frac{x_{k+1}-x_k}{ (x_k - x_{k-1})^2 } = -\frac{1}{2} \frac{ f{''}(x^*) }{ f{'}(x_k) } klim(xkxk1)2xk+1xk=21f(xk)f(x)

T 14

解:
取 x k + 1 = x k − f ( x k ) f ( x k ) − f ( x k − 1 ) ( x k − x k − 1 ) , x 0 = 1.5 , x 1 = 1.4 得 : 取x_{k+1} = x_k - \frac{ f(x_k) }{ f(x_k) - f(x_{k-1}) }( x_k - x_{k-1} ),x_0=1.5,x_1 = 1.4得: xk+1=xkf(xk)f(xk1)f(xk)(xkxk1),x0=1.5,x1=1.4

x i x_i xi数值
x 0 x_0 x01.5
x 1 x_1 x11.4
x 2 x_2 x21.369968340117594
x 3 x_3 x31.368818540524493
x 4 x_4 x41.368808111324548
x 5 x_5 x51.368808107821383

取 x ∗ = 1.368808107821383 取x^* = 1.368808107821383 x=1.368808107821383

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值