自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 收藏
  • 关注

原创 【实分析】【三】3.1 (d) 替换公理与无限集合

本节是集合论基础部分的最后一节,介绍剩下的两个公理。在分类公理中,我们通过依赖于x∈Ax\in Ax∈A的性质P,从集合A中分离出子集。但这种方式无法让我们从集合A得到新的集合B,它拥有的对象是由集合A中的对象通过某种方式转化而来的。因此,就有了公理3.6 替换公理。试想要从对象x,转化得到y,仅仅通过像分类公理中定义依赖于x的性质是不够的,我们需要定义一个同时依赖于x和y的性质P,使得他们之间具有了某种联系,由性质PxyP(x,y)Pxy决定。

2024-12-18 01:07:20 532

原创 【实分析】【三】3.1 (c) 集合的交集与差集

上文末尾介绍了集合的公理3.5 分类公理,该公理可以从集合中分出满足某个性质的子集。现在,我们借由这个公理,去定义集合间的其他计算。防止篇幅过长,集合论的最后两个公理,替换公理和无限集合将放到下节介绍,并给出后面习题部分的参考。

2024-12-17 06:08:12 916

原创 【实分析】【三】3.1 (b) 集合的相关公理(双并、子集等)

本文我们继续介绍集合相关的其他公理,完善实分析中需要用到的集合论的内容,之后就可以学习函数了。

2024-12-13 05:57:21 1297

原创 【实分析】【三】3.1 (a) 集合的几个基本公理

上一章我们引入了自然数,在接下介绍更多数系之前,先停下来介绍数学中非常重要的另一个内容——集合论。它是许多后续内容的基础,比如我们之前所学的映射、函数就都需要依赖于集合的定义。书中给出集合的一种非正式的定义如下:集合A被定义为任意一堆没有次序的东西,如234\{2,3,4\}234是一个集合。设x是一个对象,如果x是这堆东西中的一个,则称x为集合A的一个元素,记作x∈Ax\in Ax∈A,否则x∉Ax\notin Ax∈A。

2024-12-13 00:30:36 710

原创 【实分析】【二】2.3 乘法及其性质

前面我们已经定义了自然数,建立了自然数的基本运算——增长运算。然后又基于增长运算,递归地定义了加法运算。现在,我们继续重复这种方式,递归地定义乘法运算我们已经知道了,加法就是递归重复地进行增长运算,让一个数m加上数n,就是对n重复m次增长运算。乘法的定义也是类似,即重复地进行加法运算,其具体定义如下:设m是自然数,为把0乘到m上,定义0×m00×m:=0。设已经定义好了如何把n乘到m上,那么我们归纳地有n×mn×mmn×m:=n×mm。

2024-12-08 06:35:48 1152

原创 【实分析】【二】2.2 (c)自然数的序

在2.2 (b)的末尾,我们定义了自然数的正性,现在,我们来定义自然数的序,它是一种自然数的二元关系,通过加法进行定义。自然数的序定义如下:设n和m是自然数,我们称n大于等于m,记为n≥mm≤nn≥mm≤n,当且仅当存在自然数a,使得nman=m+anma;我们称n严格大于m,记为nmmnn> m,m< nnmmn,当且仅当n≥mn≠mn≥mnm。这个定义理解起来还是非常直观易懂的,没有需要过多赘述的地方。由于任意一个自然数x。

2024-12-06 02:37:58 839

原创 【实分析】【二】2.2 (b) 加法的其他运算规律

在2.2(a)中,我们介绍了加法的定义及其交换律。然而,所学的交换律其实还是只能用于两个自然数相加,如果三个自然数相加其实还不能自由的交换顺序。这是因为abca+b+cabc其实按现在已掌握的内容来说,严谨的写法应该是abc(a+b)+cabc,如果应用交换律,只能得到abccababccab,而不是我们现象的任意的顺序。在本文中,我们将证明加法具有结合律,从而就能将上述三个自然数的加法进行任意交换了。

2024-12-03 03:52:29 892

原创 【实分析】【二】2.2 (a) 加法与交换律

在2.1 Peano公理中,我们学习了建立一个自然数需要的条件,其中定义了自然数的基本运算,增长运算。本文进一步对增长运算进行拓展,定义自然数的加法运算,并给出我们习以为常的加法交换律的证明。在介绍加法的定义之前,先介绍一个叫递归定义的命题:设对每个自然数n,都有某个函数fnN→NfnN→N将自然数映射成自然数。设c是一个自然数,那么可以给每个自然数n指定唯一的一个自然数ana_nan​,使得a0canfnana0​can++​fn​。

2024-11-29 21:59:37 1056

原创 【实分析】【二】2.1 Peano 公理:自然数的公理化定义

事到如今,我们已经学习了太多的数系,自然数、有理数、实数、复数等等,我们能够熟练运用各种运算法则,交换律、分配律。但是似乎我们并没有严格定义过、推导过这些数系与运算法则。第二章第一个内容,就是关于自然数,重新认识自然数,以一种更为严格、抽象的方式去看待。印象中,小学的时候学习自然数的时候,老师会很直观地、形式化地告诉我,自然数就是01234...01234...。到了高中,学了集合以后,我们会把它定义成一个自然数集,自然数就是该集合中的元素,这个集合由从0开始无限往下数下去的所有数构成。

2024-11-27 03:10:54 1375

原创 【实分析】【一】引言——为什么想学这个

希望能够严格地弄清楚学习数学这么多年来各种模棱两可含糊不清的所有问题。

2024-11-27 01:15:44 207

原创 【线性代数】【二】2.10 标准正交基与正交矩阵

本文将介绍正交基、正交矩阵、与施密特正交化算法。正交是向量中一种非常好的性质,意味着两个向量互相之间没有冗余,也容易被区分。本文介绍了标准正交基的性质,并给出了构造标准正交基的方法,最后引申出正交矩阵的概念。

2024-08-21 05:03:49 2726

原创 【线性代数】【二】2.9 子空间投影

上文讲到子空间的正交关系,再高中学习向量正交后,紧接着学习的一个概念是向量投影。现在,我们进一步扩展概念,学习子空间投影。本文将向量投影拓展为子空间投影,对其求解、投影矩阵进行了推导。投影是一种寻求近似的方法,之前我们提到当非齐次方程组右侧向量不在矩阵的列空间中时,方程组无解。但是我们可以找到在该列空间中与该向量最为解决的列向量——子空间投影,从而实现在有限的基张成的空间上去近似表示未知向量。

2024-08-15 04:28:13 1482

原创 【线性代数】【二】2.8 向量正交与正交补空间

本文将介绍向量的正交,以及正交补空间的定义。从而进一步加深对向量空间的理解本文介绍了向量正交的概念,并由此拓展出正交子空间以及正交补空间的概念。这些概念均与之前学习过的零空间等息息相关。

2024-08-08 03:30:41 3832

原创 【线性代数】【二】2.7 矩阵的秩

在前面的内容中,我们已经陆陆续续地给出了秩的概念。本文可以看成是对以往概念与性质的总结,那专门针对秩进行分析。之前虽然已经提到秩的定义并推导了一些性质,但还不够全面。本文可以算是对矩阵的秩的一点简单的查缺补漏吧。

2024-08-07 18:30:38 1656

原创 【线性代数】【二】2.6 矩阵的四种基本子空间

前面我们已经学习了矩阵的两个相关子空间:列空间与零空间;本文将继续介绍剩余两个基本子空间:行空间以及行空间对应的零空间。同样的,我们也将分析这些子空间之间的联系。本文介绍了矩阵的四种基本子空间,并分析了行列空间的重要性质:行秩等于列秩。从而,我们可以根据矩阵的特征,灵活地选择使用行向量或列向量来进行矩阵的分析。

2024-08-07 04:32:21 1071

原创 【线性代数】【二】2.5 零空间与非齐次线性方程组的解集

上文讲到矩阵的零空间,即线性方程组Ax0Ax0的解集。那么容易联想到的一个问题是,AxbAxb的解集有什么性质?也会构成类似的向量空间吗?与矩阵的零空间有什么联系呢?本文推导出了非齐次性方程组的解集的通解形式,并证明了该形式包含了任意解。1)先构造一组零空间的基向量;2)找到非齐次方程组的任意一个特解;3)将该特解加上零空间基向量的任意线性组合。

2024-08-06 21:55:16 2078 1

原创 【线性代数】【二】2.4 矩阵的零空间

本文我们将重点关注Ax0Ax0的解集,并说明它构成一个向量空间,即零空间。本文介绍了矩阵的零空间概念,并且对矩阵的列空间与零空间的维数进行了深入探究,得到了列数-列秩序=零空间维度的重要结论。

2024-08-06 03:38:35 1804

原创 【线性代数】【二】2.3 矩阵的列空间与线性方程组的解

基于上篇所学习的极大线性无关组与张成空间维数的有关知识,我们回到矩阵中,重新省视一下线性方程组的求解与向量空间的关系。此外,在本系列笔记1.6中我们从矩阵可逆性分析了线性方程组的解的性质,这次,我们从向量空间的角度再次分析其解的性质。本文给出了矩阵列空间的概念,并根据矩阵列空间的性质,从向量空间的角度分析了线性方程组的解——与列空间的维数以及列向量的维数关系密切相关。其实这个列空间的维数被称为矩阵的秩,也叫矩阵的列秩。后续将会对这个概念进行展开讲解。

2024-08-06 00:04:11 1644 1

原创 【线性代数】【二】2.2 极大线性无关组与向量空间的基

上一篇中我们介绍了向量空间的概念,并且学习了对任意给出的一组向量,如果构造一个向量空间。本文将更加细致的去分析张成一个向量空间,具有哪些性质。并且简要讨论向量空间的基。本文基于上文介绍的向量空间的概念,进一步介绍了极大线性无关组,向量空间的基,已经向量空间的维数与向量维数的关系。p.s. 极大线性无关组是一个针对向量组的概念,而一组基向量是针对向量空间的概念,这一点要区分清楚。

2024-08-05 01:16:03 1849

原创 【线性代数】【二】2.1 向量空间

在前面第一章的内容中,我们一直在努力想要解好一个线性方程组。在这个过程中,我们渐渐接触到了矩阵的概念。从矩阵的构成的角度来说,其实我们经常处理与分析问题的基本单位,是向量。从这一章开始,我们将以向量为主要研究对象进行学习。从这节开始,线性代数就正式开始从向量、空间的角度进行深入学习探讨。

2024-08-01 05:46:24 862

原创 【线性代数】【一】1.6 矩阵的可逆性与线性方程组的解

前文我们引入了逆矩阵的概念,紧接着我们就需要讨论一个矩阵逆的存在性以及如何求解这个逆矩阵。最后再回归上最初的线性方程组的解,分析其中的联系。本文先从初等变换的角度,给出了判断矩阵可逆性以及求逆的方法,随后再给出了线性相关性的定义以及矩阵的可逆性、向量线性相关性、以及线性方程组的解的相关关系。

2024-06-22 22:00:18 2452 4

原创 【线性代数】【一】 1.4 矩阵运算

这篇博客写在1.5 矩阵的逆之后,很惭愧,写完了逆的部分,发现还没有完整地介绍一下矩阵的运算,直接加在逆那篇又嫌冗长,只好单独补一篇。没写也是因为纠结需不需要写,矩阵的运算像从小就学的加减乘除四项运算一样刻入脑海,以至于都忽视了它。不过本着系列的完整性,还是写吧。本文完善了矩阵运算的说明,其中重点是矩阵乘法中的线性组合的理解方式,以及分块矩阵乘法。在以后的计算中适当的通过分块(包括线性组合)的方式进行矩阵乘法运算,可以简化过程,并且理解到不一样的地方,让我们拭目以待。

2024-06-12 21:09:41 1615

原创 【线性代数】【一】1.5 矩阵的逆

本文将介绍线性代数中非常重要也是非常基础的一个概念,叫做矩阵的逆,准确的说,是方阵(行数等于列数)的逆。先回顾补充一下上篇1.3的一些内容,在上文中介绍了初等变换和单位矩阵的概念,当时忘记明确一点,那就是初等矩阵与单位矩阵都必然是方阵。理由也很简单,我们知道三种初等变换都只是对矩阵的行做加减数乘等操作,并不会改变矩阵的形状大小。那么由矩阵乘法的定义,m×nm\times nm×n的矩阵左乘n×pn\times pn×p的矩阵结果是m×pm\times pm×p。

2024-06-12 18:14:37 2146

原创 【线性代数】【一】1.3 消元法的矩阵表示与初等变换

前文中介绍了线性方程组的矩阵表示,并从矩阵表示的角度分析了消元法的过程与结果。那么消元法过程中采取的换行,数乘,以及乘系数求和操作放在矩阵中,会是什么样呢?可以用矩阵运算的方式表示这些操作吗?本文将解答这个问题我们通过矩阵运算表示了线性方程组,又通过对消去法中用到的初等变换进行了矩阵表示,从而所有线性方程组的求解过程都可以用矩阵运算来表示了,即找到一系列的初等矩阵乘上系数矩阵与右边的向量bbb,使其变成上三角矩阵,然后便能直观看出解。

2024-06-09 00:34:55 1312 4

原创 【线性代数】【一】1.2 消元法与方程组的矩阵表示

本文将先介绍线性方程组求解的一般性方法——消元法。而后再给出矩阵的概念,并给出几个常见的矩阵变换的定义。本文介绍了消元法解线性方程组的一般性步骤,随后引入的矩阵的概念及一些相关的简单定义,最后从矩阵的视角重新分析了消元法的过程,矩阵帮助我们简单的表示、运算、操作方程组,也令我们更直观地观察到方程组的解的几种情况——唯一解、无穷多解、无解。后续我们将继续深入,看看矩阵这一工具还能带来什么更多的好处。

2024-05-29 23:49:11 1414

原创 【线性代数】【一】1. 1 线性方程组与线性组合

有段时间没更新了,准备开个新坑,写点数学基础相关的内容,计划先过一遍线性代数,再扩展到矩阵论,后续可能再写点凸优化的东西,看情况吧哈哈哈。线性代数应该是理工科本科时期的必修课,到研究生阶段会进一步学习矩阵论。线性代数与概率论是我认为非常重要的两部分数学基础,其中的概念理论广泛存在应用于通信与AI的各个方面。因此学好线性代数是非常重要的。——本系列参考B站的MIT线性代数视频课。本文先简单从线性方程组求解的分析中,引入了线性组合的概念,提供了从列去看待线性方程组求解的全新视角。

2024-05-27 19:19:58 1190 1

原创 【通信原理笔记】【四】数字基带传输——4.1 数字基带信号

从这一节开始介绍数字通信系统中的数字基带传输部分。与模拟通信系统相比,数字通信系统传输的对象是数字的离散信号而非连续的模拟信号,本节先学习什么是数字基带信号。这节内容非常的简单,属于科普类的内容,唯一需要熟悉一点的可能只有二进制的转化关系吧。

2024-04-19 06:04:30 2869

原创 【人工智能】debug系列——本地可视化服务器端运行的tensorboard

相信大家很多人工智能的算法都是在服务器跑的,然后用tensorboard记录训练过程中的数据并做可视化,但是服务器端没办法直接进行可视化,每次把文件导到本地在本地运行tensorboard又太麻烦,所以尝试本地可视化服务器上运行的tensorboard。本地可视化tensorboard是一个常常会遇见的小问题,特此记录作为备忘录使用。

2024-04-16 17:43:36 550

原创 【通信原理笔记】【三】模拟信号调制——3.8 载波同步

不管是幅度调制还是角度调制,都离不开正弦信号,其中相干解调都要求恢复发送端使用的正弦载波信号,这一节就来深入探究一下载波同步的相关知识。本节是第三章模拟信号调制的最后一节,介绍了载波同步相关的知识,这对于相干解调至关重要。两种载波同步的方法原理与框图也都清晰易懂,最好都能掌握。

2024-04-14 03:12:25 3556 2

原创 【通信原理笔记】【三】模拟信号调制——3.7 频分复用

现在我们学习了几种调制模拟基带信号的方法,这些调制方法可以将基带信号搬移到频带进行传输。那么如果采用不同的载波频率把多个基带信号搬移到不同的频带处,并使得他们之间不会相互干扰,把这样的多个信号一同传输,在接收端用相应的滤波器分别滤出,也可以恢复出各个信号。这样的话就能同时传输多个信号了,这种传输方式我们称为复用,这节我们便学习在频率上实现复用。这节内容很少也很简单,就是介绍一下复用的概念,在学习了模拟信号调制后,频分复用的实现方式就显得自然而然了。

2024-04-12 20:03:42 1018

原创 【通信原理笔记】【三】模拟信号调制——3.6 角度调制的抗噪声性能

这一节内容介绍的是FM信号的抗噪声性能,与之前学的幅度调制不同,角度调制系统是非线性的,其信噪比的推导计算很多地方添加了假设,最后得到一个估计值。当初我学这部分内容的时候似乎推导并不要求掌握,只需要记住结论即可,可以按需学习。角度调制系统为非线性系统,处理推导过程不像之前幅度调制那么方便,有许多工程上的近似,前提假设等。增大调制指数可以有效提高输出信噪比,但是由卡松公式可知相应的带宽也会增加。在通信原理中有许多这样的互相制约的量,想要优化其中一个量就会牺牲另一量。

2024-04-12 05:55:13 1517

原创 【通信原理笔记】【三】模拟信号调制——3.5 角度调制(FM、PM)与其频谱特性

在之前介绍的几种调制方式中,我提到信噪比时计算的是用户解调后的信噪比,然而在北邮通信原理课中考虑的是解调器输入的信噪比,即考虑的信号功率是经过BPF之后进行解调之前的部分。之前没有注意到这个差异,非常抱歉。笔者在本科学习通信原理的时候也是认为与其记解调输入信噪比的结果,不如弄清楚每一处的信号组成,这样不管求什么信噪比都能求。下面我们开始学习角度调制的内容,包括调频FM与调相PM。注:在本章中,偶尔会忘记了写幅度系数AcA_cAc​,只是一个常数不影响结论,所以我有时候嫌麻烦就不写了。

2024-04-09 06:31:33 7036

原创 【通信原理笔记】【三】模拟信号调制——3.4 单边带调制(SSB)

前面我们学习过了双边带抑制载波调制,因为其传输频谱有两个对称的边带而得名。那么既然是对称的边带,从节省带宽的角度来说,只传一个边带的话不是更好嘛?这就是本节内容——单边带调制。注:本系列文章中所用框图大多截图于杨鸿文老师的通信原理视频课。目前我们学习了三种幅度调制的方式,DSB,AM以及SSB,对比着去看发现这几种调制方式联系非常紧密。DSB是最直接的调制方法,直接搬移频谱到基带,实现也最为简单。

2024-04-06 00:06:48 5786 2

原创 【通信原理笔记】【三】模拟信号调制——3.3 包络调制(AM)

本文将介绍包络调制方法,该方法的思路是将mtm(t)mt作为已调信号的复包络的模——即包络。本文介绍了从包络的角度去完成模拟信号的调制,从而可以不依赖于载波恢复来进行信号的解调。评价性能时需要注意调幅系数的概念理解以及其与调制效率的关系。

2024-04-02 06:12:40 3954

原创 【通信原理笔记】【三】模拟信号调制——3.2 双边带抑制载波调制(DSB-SC)

从这一篇开始我们依次介绍几种模拟信号调制的方法,包括其数学表达式,系统框图、解调方式、性能评价等。本文介绍了最基本最直接的调制方式——DSB-SC调制,这种调制方式需要使用相干解调。那么就有一种优化思路是将载波信号也一起发送过去,在接收端使用窄带滤波器获取该载波信号进行解调,下一篇将进行这种调制方式的讲解。

2024-04-01 21:32:12 3153

原创 【通信原理笔记】【三】模拟信号调制——3.1 模拟信号调制基本模型与思路

一般常见的信号的频带均集中在基带附近,如果要通过无线地方式传输,其较长的波长需要大型的天线才能传输,难以实现。另一方面基带的带宽资源是有限的,要想利用更多的带宽进行传输就需要将信号搬移到频带——而这正是信号调制所要做到事情。这一章我们将学习模拟信号的调制。本文介绍了模拟信号的概念,接着给出了模拟信号调制的基本框架,调制思路和评价方法。调制的目的是为了适配信道,为了将基带信号搬移到频带进行传输。

2024-04-01 03:41:11 3189

原创 【强化学习】demo系列——基于gym自定义RL环境

gym是许多强化学习框架都支持了一种常见RL环境规范,实现简单,需要重写的api很少也比较通用。本文旨在给出一个简单的基于gym的自定义单智能体强化学习环境demo写好了自定义的RL环境后,还需要注册到安装好的gym库中,不然导入的时候是没有办法成功的。首先需要在gym/envs文件目录下创建一个文件夹用于保存你的RL环境(),一般路径为./anaconda3/envs/RL/lib/python3.8/site-packages/gymnasium/envs。在保存RL环境的文件夹下创建“init。

2024-03-29 19:55:12 3773

原创 【通信原理笔记】【二】随机信号分析——2.6 匹配滤波器与最佳采样时刻

终于到第二章的最后一节了,上节内容介绍了高斯白噪声,这是一种广泛存在叠加在信号上的干扰噪声,会影响信号的接受与解码。因此本节就要研究如果使得接收端采样的信号功率与噪声功率的比值尽可能大,也就是信噪比最大。在这篇中介绍了第二章最后的一节内容,匹配滤波器在实际系统中往往是开根号拆分成两部分放在收发两端,达到匹配滤波的目的,这部分内容会在后面的章节做详细介绍。总的来说,第二章的内容涉及了比较多的偏数学的知识,不过这些都是后续内容会用到的基础知识,虽然现在看起来还有点抽象,但是越到后面也就越清楚它们的作用了。

2024-03-24 00:23:39 2147

原创 【通信原理笔记】【二】随机信号分析——2.5 高斯随机过程

这篇我们来学习通信原理中非常重要的高斯(正态)随机过程,在之后的内容中会反复使用这个模型在这篇中介绍了高斯过程与高斯白噪声,将在之后的内容中得到应用。最重要的性质就是高斯白噪声通过各种系统得到的仍然是平稳高斯过程。下一篇将是第二章的最后一节内容匹配滤波器。

2024-03-18 07:02:47 2641

原创 【通信原理笔记】【二】随机信号分析——2.4 复随机过程

目前为止,我们对实随机过程的分析方法已经基本掌握了。像复信号一样,我们也会有需要处理复随机过程的时候,这篇笔记我们就来学习一下复随机过程。强调一下,由于平稳过程的均值是常数,在讨论平稳随机过程时都会默认做了零均值处理,即默认任意涉及到的平稳过程均为零均值随机过程。复随机过程ZtXtjYtZtXtjYt是由一对实随机过程组成。

2024-03-17 02:06:12 1955 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除