图算法之最短路径(一)

目录

一、Floyd算法

1.时间复杂度:

2.Floyd的模板代码

3.例题

二.bellman_ford算法

1.时间复杂度

2.算法模板

3.例题

三.SPFA

1.模板代码:

2.例题


一、Floyd算法

Floyd是最短路里面最简单,也是最好理解的一个算法,其本身的含义就是寻求是否需要中间的一个过度点,其用到的三层for循坏。

1.时间复杂度:

o(n的三次方)。

2.Floyd的模板代码

void Floyd()
{
	for(int k=1;k<=n;k++)//k作为中间询问点,一定要写在最外层;
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
			}
		}
	}	
}

3.例题

        http://acm.mangata.ltd/p/P1507

#include<bits/stdc++.h>
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 8e2+10;

int n,m,k;
int f[N][N];

void init()
{
	for(int i=1;i<=n;i++)
	{
		for(int j=1;j<=n;j++)
		{
			f[i][j] = i==j?0:INF;
		}
	}
}

void Floyd()
{
	for(int k=1;k<=n;k++)//k作为中间询问点,一定要写在最外层;
	{
		for(int i=1;i<=n;i++)
		{
			for(int j=1;j<=n;j++)
			{
				f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
			}
		}
	}
}



int main()
{
	cin>>n>>m>>k;
	init();
	
	while(m--)
	{
		int u,v,w;
		cin>>u>>v>>w;
		f[u][v] = min(f[u][v],w);
	}
    Floyd();
	while(k--)
	{
		int x,y;
		cin>>x>>y;
		if(f[x][y]>INF/2)cout<<"impossible"<<endl;
		else cout<<f[x][y]<<endl;
	
	}
	return 0;
}

二.bellman_ford算法

这也是一个比较暴力的算法,其也是通过松弛来进行操作,通过循环就能够解决,这个方法可以处理大部分的图。

1.时间复杂度

n*m。

2.算法模板

void bellman_ford(int s)//s表示初始序号;
{
	for(int i=1;i<=n;i++) dis[i]=INF;
	dis[s]=0;
	
	for(int i = 1;i <=n; i++)
	{
		for(int j = 0;j < 2 * m; j++)
		{
			int v=E[j].v,u=E[j].u,w=E[j].w;
			if(dis[v] > dis[u] + w)
				dis[v] = dis[u] + w;
		}
	}
}

3.例题

http://acm.mangata.ltd/p/P1063

#include<bits/stdc++.h>
using namespace std;

const int INF = 0x3f3f3f3f;
const int N = 1e3+10;

int n,m;
struct ma{
	int u,v,w;
};
int dis[N];
vector <ma> E;

void bellman_ford(int s)
{
	for(int i=1;i<=n;i++) dis[i]=INF;
	dis[s]=0;
	
	for(int i = 1;i <=n; i++)
	{
		for(int j = 0;j < 2 * m; j++)
		{
			int v=E[j].v,u=E[j].u,w=E[j].w;
			if(dis[v] > dis[u] + w)
				dis[v] = dis[u] + w;
		}
	}
}


int main()
{
	cin>>n>>m;
	int t=m;
	while(t--)
	{
		int u,v,w;
		cin>>u>>v>>w;
		E.push_back({u,v,w});//因为是无向图;
		E.push_back({v,u,w});
	}
	
	int ans=INF;
	
	for(int i=1;i<=n;i++)
	{
		int cnt=0;
		bellman_ford(i);//把每个起点都寻求一遍;
		for(int j=1;j<=n;j++)
		{
			cnt+=dis[j]; 
		}
		ans=min(ans,cnt);
	}
	
	cout<<ans<<endl;
	return 0;
}

三.SPFA

这是bellman_ford算法的队列优化,其思维和bellman_ford差不多

1.模板代码:

void SPFA(int s)
{
	for(int i=0;i <= n;++i) dis[i]=INF,vis[i]=false;
	dis[s] = 0;vis[s] = true;
	queue<int> q;
	q.push(s);
	while(!q.empty())
	{
		int t = q.front();
		q.pop();
		vis[t]= false;
		for(int i =0,l = E[t].size();i<l;++i)
		{
			int j =E[t][i].first,w = E[t][i].second;
			if(dis[j]>dis[t]+w)
			{
				dis[j] = dis[t]+w;
				if(!vis[j]) q.push(j),vis[j] = true;
			}
		}
	}
}

2.例题

同bellman_ford.

#include<bits/stdc++.h>
using namespace std;

#define PII pair<int,int>

const int INF = 0x3f3f3f3f;
const int N = 1e3+10;

int n,m;
int dis[N];
bool vis[N];
vector <PII> E[N];

void SPFA(int s)
{
	for(int i=0;i <= n;++i) dis[i]=INF,vis[i]=false;
	dis[s] = 0;vis[s] = true;
	queue<int> q;
	q.push(s);
	while(!q.empty())
	{
		int t = q.front();
		q.pop();
		vis[t]= false;
		for(int i =0,l = E[t].size();i<l;++i)
		{
			int j =E[t][i].first,w = E[t][i].second;
			if(dis[j]>dis[t]+w)
			{
				dis[j] = dis[t]+w;
				if(!vis[j]) q.push(j),vis[j] = true;
			}
		}
	}
}


int main()
{
	cin>>n>>m;
	int t=m;
//	while(t--)
//	{
//		int u,v,w;
//		cin>>u>>v>>w;
//		E.push_back({u,v,w});//因为是无向图;
//		E.push_back({v,u,w});
//	}
	
	while(t--)
	{
		int u,v,w;
		cin>>u>>v>>w;
		E[u].push_back({v,w});
		E[v].push_back({u,w});
	}
	int ans=INF;
	
	for(int i=1;i<=n;i++)
	{
		int cnt=0;
		//bellman_ford(i);//把每个起点都寻求一遍;
		SPFA(i);
		for(int j=1;j<=n;j++)
		{
			cnt+=dis[j]; 
		}
		ans=min(ans,cnt);
	//	cout<<ans;
	}
	
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cocolaret

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值