Object discovery from motion-guided tokens

Abstract

这项工作引入了一种新颖的自动编码器架构 MoTok,用于无监督视频对象发现。通过利用运动引导标记化,该模型增强了 Transformer 架构中注意力机制的核心矢量量化过程。我们的方法允许出现可解释的中级特征,从而简化对象发现任务。对合成数据集和真实世界数据集的综合评估表明,如果解码器具有足够的容量,运动引导可以减轻对标签、光流或深度解码的需求,从而实现最先进的结果。所提出的方法有效地解决了对象背景模糊性的挑战,并提高了现实视频场景中的性能 [T4]、[T5]。

网络架构图

图2。提议的运动引导令牌(MoTok)框架的模型架构。MoTok是一个统一的视频对象发现框架,可以灵活地选择不同的解码器和重构空间。我们的框架有效地利用了运动和标记化之间的协同作用,并允许出现可解释的特定对象的中级功能。

methods

论文中提出的方法称为运动引导标记(MoTok)。它旨在通过利用运动提示和标记化来增强对象发现。以下是 MoTok 框架的关键组件:

  1. 运动引导标记化:该方法利用运动信号创建标记表示,简化基于颜色、纹理和位置等属性将像素分组到中级区域的过程。这有助于更有效地区分对象和背景。
  2. 联合训练:MoTok 使用运动提示和矢量量化联合训练槽表示。这种方法允许模
内容概要:本文详细介绍了如何利用Simulink进行自动代码生成,在STM32平台上实现带57次谐波抑制功能的霍尔场定向控制(FOC)。首先,文章讲解了所需的软件环境准备,包括MATLAB/Simulink及其硬件支持包的安装。接着,阐述了构建永磁同步电机(PMSM)霍尔FOC控制模型的具体步骤,涵盖电机模型、坐标变换模块(如Clark和Park变换)、PI调节器、SVPWM模块以及用于抑制特定谐波的陷波器的设计。随后,描述了硬件目标配置、代码生成过程中的注意事项,以及生成后的C代码结构。此外,还讨论了霍尔传感器的位置估算、谐波补偿器的实现细节、ADC配置技巧、PWM死区时间和换相逻辑的优化。最后,分享了一些实用的工程集成经验,并推荐了几篇有助于深入了解相关技术和优化控制效果的研究论文。 适合人群:从事电机控制系统开发的技术人员,尤其是那些希望掌握基于Simulink的自动代码生成技术,以提高开发效率和控制精度的专业人士。 使用场景及目标:适用于需要精确控制永磁同步电机的应用场合,特别是在面对高次谐波干扰导致的电流波形失真问题时。通过采用文中提供的解决方案,可以显著改善系统的稳定性和性能,降低噪声水平,提升用户体验。 其他说明:文中不仅提供了详细的理论解释和技术指导,还包括了许多实践经验教训,如霍尔传感器处理、谐波抑制策略的选择、代码生成配置等方面的实际案例。这对于初学者来说是非常宝贵的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值