证明复杂度与克内泽 - 洛瓦斯定理
在逻辑与组合数学的研究中,证明复杂度是一个重要的领域,它关注的是证明一个命题所需的资源,如时间、空间等。而克内泽 - 洛瓦斯定理在组合数学中有着重要的地位,本文将围绕证明复杂度与克内泽 - 洛瓦斯定理展开深入探讨。
1. 预备知识
在开始讨论克内泽 - 洛瓦斯定理之前,我们需要了解一些基本的概念和引理。
1.1 计数函数的性质
对于布尔变量 (X_1, \cdots, X_n, Y_1, \cdots, Y_m)(其中 (n \leq m)),在LK系统中,有以下关于计数函数 (Count) 的多项式大小证明的事实:
1. (X_1 \land X_2 \land \cdots \land X_n \vdash Count_n(X_1, X_2, \cdots, X_n) = n)
2. (\vdash Count_{(\frac{n}{2})}(X_1 \land X_2, \cdots, X_i \land X_j, \cdots, X_{n - 1} \land X_n) = \lfloor\frac{Count_n(X_1,X_2,\cdots,X_n)}{2}\rfloor)
3. (\vdash Count_{n^2}((X_i \land {i \neq j}) {i,j = 1}^n) = Count_n(X_1, X_2, \cdots, X_n) \cdot (n - 1))
4. ((X_1 \leq Y_1), \cdots, (X_n \leq Y_n) \vdash (Count_n((X_i) {i = 1}^n) \leq Co
订阅专栏 解锁全文
31

被折叠的 条评论
为什么被折叠?



