新型开关稳压器抑制电磁干扰

电磁干扰(EMI)对电路设计人员来说是一个潜在问题。开关稳压器可能会在许多产品中引起电磁干扰。凌力尔特公司开发了扩频调制、锁相同步和自适应电源模式等新技术,可减少不必要的干扰。

新型IC解决旧问题

LTC1436‐PLLL是一款恒定频率、电流模式、同步降压型开关稳压器,通过控制外部N沟道MOSFET实现高效的功率转换。它还具有自适应电源模式,可在轻负载电流下以恒定频率切换,保持良好的效率。图100.1a显示了在图100.2所示电路中,当采用跳周期模式工作并向输出电容提供3mA负载电流(满载的0.1%)时,5V输出产生的音频频段噪声。该模式可能导致在向输出电容传输能量脉冲之间跳过多个周期。这些能量脉冲在足够低的输出电流下会侵入音频频段。图100.1b显示在相同条件下,自适应电源模式完全消除了音频频段噪声。

示意图0

传统上,为了实现图100.1b所示的音频响应,会牺牲效率。采用大尺寸同步MOSFET,强制在开关频率下实现连续电感电流,而不论负载大小如何。相关的栅极电荷损耗以及由相对较大的电感纹波电流引起的损耗,导致在轻负载时效率非常差。自适应电源模式仅使用小型(SOT‐23) MOSFET Q3和D2,以常规降压模式工作,实现恒定频率下的不连续电感电流工作,从而大幅降低功率损耗。小型MOSFET的栅源电容明显小于两个大尺寸MOSFET中的任何一个。根据元件选择的不同,Q3与Q1/Q2之间的栅源电容差异可达50比1,因此Q3所需的栅极驱动功率(损耗)仅为Q1/Q2的2%。这显著提高了轻负载时的效率。

新功能提供新的电磁干扰控制

除了音频频率抑制外,LTC1436‐PLLL还具有三种额外的射频电磁干扰控制机制:

示意图1
示意图2

  1. LTC1436‐PLL允许通过开关频率调制来扩展开关噪声频谱。通过频率调制,峰值能量被降低并分散到宽频率范围内,如图100.3所示。黑色迹线显示了正常的190kHz开关频率及其谐波。彩色迹线显示了使用100Hz锯齿波波形对锁相环低通滤波器(PLLLLPF)引脚进行调制的结果。调制后,开关频率能量减少了超过20dB;在此示例中,二次和三次谐波衰减得更为明显。图100.44显示了在与图100.3相同条件下,PLLLLPF调制造成的直至100MHz的频谱。

  2. 通过选择合适的振荡器电容值,可将开关频率在50kHz至400kHz范围内进行编程,从而将谐波远离455kHz等敏感频率。

  3. 开关频率可与外部系统时钟锁相,从而使开关频率的谐波和边带与系统产生的谐波和边带保持一致。该锁相可在fOSC周围的±30%频率范围内维持。

附加功能

LTC1436‐PLLL提供上电复位定时器功能,用于指示输出电压超范围条件,并带有辅助稳压器,该辅助稳压器控制外部PNP晶体管以实现附加的低噪声线性稳压输出。LTC14377具备LTC1436‐PLLL的所有功能,并增加了一个带基准的内部比较器,可用于检测低电池电量状态或实现其他有用功能。基本LTC14366将LTC14377中的附加比较器替换为锁相环功能。

示意图3

5.5VTO MOD24V C11, C12: KEMET T495X226M035AS o R7 C11 C12C13. C14: AVX TPSD107M010R0065PLL 102 22uF 22uF un 35V 35V L1: SUMIDA CDRH125-10Q1 + Q2: SILICONIX Si4936DY (DUAL FET) R1R647k Q3: INTERNATIONAL RECTIFIER IRLML280310k MOD R8:IRC LR2010-01-R033-J A W R2.10k C1I 1 24PLLLPF PLLIN C2,56pF0.01pFI PLL 2 23Cosc POR POR C3,0.1uFI 3 22RUN/SS BOOST R3,10k 4 21一 ITH TGL Q1 L1 R810uH C45 20 0.0332SFB SW YYY -WW1C5,47pF 330pF6 19 Q3C10SGND TGS HH0.1pF C6 7 LTC1436-PLL 18 C13,C14100pF INTVcc VPROG VIN C8 D1MBRS0530100pF8 170.1pF D210V VOSENSE INTVcc MBRS130L R4 100Q×29 16 C9W SENSE BG 4.7uF Q2C7,0.001pF10 15SENSE* PGND GND R5 11 141002 AUXON EXTVcc12 13AUXFB AUXDR R9 R10 -WWR1120k 35.7k 47k W W C15Q4+3.3uF MMBT2907ALT13.3V DN141 F020.1A

内容概要:本文详细介绍了一个基于黏菌优化算法(SMA)优化的Transformer-LSTM组合模型在多变量回归预测中的完整项目实例。项目通过融合Transformer的全局特征提取能力与LSTM的局部时序建模优势,构建层次化混合模型,并引入SMA算法实现超参数自动寻优,提升模型性能与泛化能力。项目涵盖数据预处理、模型设计、训练优化、结果评估、GUI可视化界面开发及工程化部署全流程,配套完整代码与目录结构设计,支持端到端自动化建模与跨平台应用。; 适合人群:具备一定机器学习和深度学习基础,熟悉Python编程与PyTorch框架,从事数据科学、人工智能研发或工程落地的相关技术人员,尤其是工作1-3年希望提升模型自动化与实战能力的研发人员。; 使用场景及目标:①应用于智能制造、金融风控、智慧医疗、能源管理、气象预测、智能交通等多变量时间序列预测场景;②掌握Transformer与LSTM融合建模方法;③学习SMA等群体智能算法在深度学习超参数优化中的实际应用;④实现从数据处理到模型部署的全流程自动化开发。; 阅读建议:建议结合文档中的代码示例与GUI实现部分动手实践,重点关注模型架构设计、SMA优化机制和训练流程细节,配合可视化分析深入理解模型行为。同时可扩展尝试不同数据集和优化算法,提升对复杂时序预测任务的综合把控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值