The Future of Probabilistic Relational Models
1. Introduction
Probabilistic Relational Models (PRMs) have emerged as a powerful tool for representing and reasoning about uncertainty in relational data. They extend traditional probabilistic models to handle complex relationships between entities, allowing for more accurate and expressive modeling of real-world scenarios. This article explores the future directions and potential advancements in PRMs, focusing on how they can better address challenges in data complexity, scalability, and integration with other AI technologies.
2. Improving PRMs for Complex and Large-Scale Data
One of the primary challenges facing PRMs is the ability to handle increasingly complex and large-scale datasets. Trad
超级会员免费看
订阅专栏 解锁全文
54

被折叠的 条评论
为什么被折叠?



