航空发动机非线性设定点控制方法解析
在航空发动机的控制领域,非线性设定点控制是一个至关重要的研究方向。其目的在于提升发动机在不同飞行工况下的控制性能,确保发动机的稳定运行。本文将详细介绍两种主要的控制方法:广义Gronwall - Bellman引理方法和控制Lyapunov函数方法。
广义Gronwall - Bellman引理方法
广义Gronwall - Bellman引理是解决航空发动机非线性控制问题的重要工具。在介绍该引理之前,我们先来看其基本条件:
1. 设 (a,b,k \in \mathbb{R}),满足 (0 \leq a < b) 且 (k > 0),同时定义整数 (l > 1)。
2. (f : \mathbb{R}^+ \to \mathbb{R}^+) 是一个可积函数,对于任意的 (\alpha, \beta \in [a, b])((0 \leq \alpha < \beta)),有 (\int_{\alpha}^{\beta} f(s)ds > 0)。
3. (x : [a, b] \to \mathbb{R}^+) 是一个本质有界函数,满足 (x(t) \leq k + \int_{a}^{t} f(s)[x(s)]^l ds),对于所有的 (t \in [a, b])。
若不等式 (1 - (l - 1)k^{l - 1} \int_{a}^{b} f(s)ds > 0) 成立,则有 (x(t) \leq \frac{k}{(1 - (l - 1)k^{l - 1} \int_{a}^{t} f(s)ds)^{\frac{1}{l - 1}}}),对于所有的 (t \in [a,