48、以人类为中心的面部计算技术解析

以人类为中心的面部计算技术解析

在情感语音合成领域,韵律转换之外,语音质量转换也至关重要。不同研究表明,语音质量转换对于某些情感类别可能是不可或缺的,同时也存在说话者主要依靠韵律来表达某些情感的策略,但这是否适用于所有类型的情感尚不清楚。

语音质量转换难题与解决方法

在双音素合成中,控制语音质量并非易事,因为修改双音素数据库的语音质量极为困难。不过,有两种部分补救方法:
- 多数据库切换法 :录制具有不同发声努力程度的单独双音素数据库。在合成过程中,系统在不同语音质量的双音素数据库之间进行切换,并从合适的数据库中选择双音素单元。
- 抖动模拟法 :利用抖动来模拟语音质量转换。抖动是基频轮廓的快速波动,添加抖动本质上相当于在基频轮廓上添加噪声,通过抖动模拟可以在一定程度上观察到合成语音中语音质量的变化。

实验成果

通过之前描述的框架和方法,已构建出一个功能完备的文本驱动 3D 类人情感视听头像系统。该系统在渲染中性以及几种基本情感(如快乐、喜悦、悲伤、愤怒和恐惧)方面取得了初步且有前景的实验结果。演示可在 此处 查看。

以下是主观听力实验的结果:
| 情感 | 实验 1(仅语音) | | 实验 2(语音 + 文字内容) | | 实验 3(语音 + 面部表情) | | 实验 4(语音 + 文字内容 + 面部表情) | |
| — | — | — | — | — | — | — | — | — | <

内容概要:本文围绕“融合模拟退火和自适应变异的混沌鲸鱼优化算法(AAMCWOA)”展开研究,提出一种创新的智能优化算法,通过引入混沌初始化、模拟退火机制和自适应变异策略,有效提升传统鲸鱼优化算法的收敛速度与全局搜索能力,避免陷入局部最优。该算法在MATLAB平台上实现,并应用于RBF神经网络的参数优化与分类预测,验证了其在复杂非线性问题中的优越性能。文档还附带14页算法原理解析,深入阐述各改进模块的设计思路与数学模型。此外,文中列举了大量相关科研方向与应用场景,涵盖信号处理、路径规划、电力系统、故障诊断、机器学习等多个领域,展示了该算法的广泛适用性。; 适合人群:具备一定编程基础和优【创新SCI算法】AAMCWOA融合模拟退火和自适应变异的混沌鲸鱼优化算法研究(Matlab代码实现)化算法背景,从事智能算法研究或工程优化应用的研究生、科研人员及工程技术人员,尤其适合致力于智能计算、人工智能与MATLAB仿真的1-3年经验研究人员。; 使用场景及目标:①用于解决复杂函数优化、神经网络参数调优、分类预测等科研问题;②作为SCI论文复现与算法创新的基础工具,支撑高水平学术研究;③结合MATLAB代码实现,快速验证算法有效性并拓展至实际工程场景。; 阅读建议:建议结合提供的算法原理详解文档逐模块理解AAMCWOA的实现逻辑,通过调试MATLAB代码掌握参数设置与性能评估方法,并尝试将其迁移至其他优化任务中进行对比实验,以深化对智能优化算法设计思想的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值