*暑期自学算法入门* 第一章 *数学基础* 第一节 *辗转相除*

暑期自学算法入门
第一章
数学基础
第一节
辗转相除
理论介绍:辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
具体实现代码`

**#include<iostream>
using namespace std;
int main()
{
	int p,m,n,t;
	cin>>p;
	while(p--)
	{
		cin>>m>>n;
		if(m>n)
		{
			t=m;
			m=n;
			n=t;
		}
		
		while(n%m!=0)
		{
			t=n%m;
			n=m;
			m=t;
		}
		if(m==1)
		cout<<"NO"<<endl;
		else 
		cout<<"YES"<<endl;
	}
}**

以上具体实现的功能是有p组输入n,m 分别用辗转相除算出最小公约数,若为1则输出NO
反之则输出YES

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值