暑期自学算法入门
第一章
数学基础
第一节
辗转相除
理论介绍:辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。
具体实现代码`
**#include<iostream>
using namespace std;
int main()
{
int p,m,n,t;
cin>>p;
while(p--)
{
cin>>m>>n;
if(m>n)
{
t=m;
m=n;
n=t;
}
while(n%m!=0)
{
t=n%m;
n=m;
m=t;
}
if(m==1)
cout<<"NO"<<endl;
else
cout<<"YES"<<endl;
}
}**
以上具体实现的功能是有p组输入n,m 分别用辗转相除算出最小公约数,若为1则输出NO
反之则输出YES