如何求集合的子集-从回溯暴力搜索到伪动态规划再到数学求解:力扣1863. 找出所有子集的异或总和再求和

1. 题目分析  

原题:给你一个数组 nums ,请你求出 nums 中每个子集异或总和,计算并返回这些值相加之和 

注意:在本题中,元素相同的不同子集应多次计数。

举例:给定数组nums=[1,1,3],其所有子集以及子集异或总和如下表所示:

子集 异或
【】 0
【1】 1
1 1
【3】 3
【1,1 1^1=0
【1,3】 1^3=2
1,3】 1^3=2
【1,1,3】 1^1^3=3
异或总和: 0+1+1+3+0+2+2+3=12

解决方案:

【方案1】

        题目本身不难,我们可以直接通过暴力搜索的方法找出数组nums的所有子集,再对各个子集求其异或值,最后将所有子集的异或值相加即可。关于暴力搜索找出所有子集的方法,我将在 【2.暴力搜索求子集】 中详细阐述,具体将包括常规的深度优先搜索、广度优先搜索和比较特殊的动态规划思想演变的两种搜索算法,以及我在写这篇内容的时候,突然想到的由全排列构造的思想演变的一种算法。

【方案2】

        由于位运算存在较强的技巧性,所以我将在【3.数学方法推公式】中,基于数学推导证明,给出一种时间复杂的为O(n)的计算方法。

2. 暴力搜索求子集

        首先,明确我们的任务是搜索,也就是遍历。而常用的搜索算法总结起来就是:对于简单的列表型的数据类型(如顺序表、链表等,具体如一维数组、二维数组【其本质还是一维数组】、链表、字符串等),我们直接利用一层 for 循环即可完成所有数据的遍历;对于较为复杂的数据类型(如树、图等)我们一般都是利用深度优先

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值