1. 题目分析
原题:给你一个数组 nums
,请你求出 nums
中每个子集异或总和,计算并返回这些值相加之和
注意:在本题中,元素相同的不同子集应多次计数。
举例:给定数组nums=[1,1,3],其所有子集以及子集异或总和如下表所示:
子集 | 异或 |
【】 | 0 |
【1】 | 1 |
【1】 | 1 |
【3】 | 3 |
【1,1】 | 1^1=0 |
【1,3】 | 1^3=2 |
【1,3】 | 1^3=2 |
【1,1,3】 | 1^1^3=3 |
异或总和: | 0+1+1+3+0+2+2+3=12 |
解决方案:
【方案1】
题目本身不难,我们可以直接通过暴力搜索的方法找出数组nums的所有子集,再对各个子集求其异或值,最后将所有子集的异或值相加即可。关于暴力搜索找出所有子集的方法,我将在 【2.暴力搜索求子集】 中详细阐述,具体将包括常规的深度优先搜索、广度优先搜索和比较特殊的动态规划思想演变的两种搜索算法,以及我在写这篇内容的时候,突然想到的由全排列构造的思想演变的一种算法。
【方案2】
由于位运算存在较强的技巧性,所以我将在【3.数学方法推公式】中,基于数学推导证明,给出一种时间复杂的为O(n)的计算方法。
2. 暴力搜索求子集
首先,明确我们的任务是搜索,也就是遍历。而常用的搜索算法总结起来就是:对于简单的列表型的数据类型(如顺序表、链表等,具体如一维数组、二维数组【其本质还是一维数组】、链表、字符串等),我们直接利用一层 for 循环即可完成所有数据的遍历;对于较为复杂的数据类型(如树、图等)我们一般都是利用深度优先