平面解析几何----过椭圆上一点作互相垂直的两条直线交椭圆于点AB,AB恒过定点M的坐标

### 解析几何概述 解析几何是通过坐标系来研究图形性质的一门学科,它将代数与几何相结合。这使得许多复杂的几何问题可以通过计算解决。 #### 坐标法定义、公式与定理 在二维平面上建立直角坐标系后,任何一点都可以由一对有序实数组\( (x, y) \)唯一确定[^2]。这种表示方法不仅简化了几何对象之间的关系描述,还便于利用代数手段处理各种变换操。 ```python def point_representation(x, y): """ 表示一个坐标. 参数: x --坐标的值 y --坐标的值 返回: tuple -- 包含两个元素的元组,分别代表横纵坐标 """ return (x, y) ``` #### 直线及其方程 一条直线可以被其上任意两或者斜率和截距完全决定。当已知直线上某\((x_0,y_0)\)以及该直线相对于X轴正方向的角度θ时,则此直线可表达为: \[y-y_{0}=k(x-x_{0})\] 其中 \( k=\tan(\theta) \) 是这条直线的斜率;而如果知道直线穿过原外另一固定点P(a,b), 则上述公式变为: \[bx-ay=ab-ba\] 此外还有其他形式如一般式 Ax + By+C = 0 来描绘不同类型的直线特性。 #### 圆及其方程 对于中心位于C(h,k),半径r>0 的圆形区域,在笛卡尔坐标体系下可以用如下标准方程式表述: \[(x-h)^{2}+(y-k)^{2}=r^{2}\] 这里h 和 k 分别对应于圆心位置参数; r 显然就是指明了这个形状大小的关键量度. #### 曲线与方程 更广泛的曲面或路径也可以借助隐函数 F(x,y)=0 或者显式的多项式 G(t)=(f(t),g(t)) 形成轨迹图像。这类表达方式特别适用于描述那些无法简单地用单一变量变化规律概括出来的复杂形态。 #### 椭圆及其方程 椭圆是一种特殊的封闭曲线,具有特定的标准方程: \[\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1\][^2] 这里的 h 和 k 同样指示着椭圆质心所在之处,而 a 及 b 分别决定了沿各自主轴伸展的程度——即长短轴长度之半。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值