欢迎关注我的新专栏:Dylan精选数学题。
Dylaaan:【000】专栏的简单介绍zhuanlan.zhihu.com例 已知椭圆
,过原点
作两条互相垂直的射线,分别交
于
和
两点,则
(1)
,为定值。
(2)直线
到
点的距离
,为定值。
准备工作 先说明(1)和(2)的等价性:
在
中,因为
,所以
另一方面,设直线
到
的距离为
,则
进而
,又由勾股定理知:
故
证明1 设
,联立
得:
,故
用
代替
得:
故
证明2 设
,
,
联立
得:
由韦达定理:
所以
到
距离
,
证明3 同证明2,有
下同证明2。
证明4 设
,代入
得:
由韦达定理:
,下同证明2。
证明5 设
,联立
得:
由韦达定理:
,故
到
距离
证明6 设
,
,
则
,
,代入
得:
,两式相加得
证明7 设
(
为参数),代入
得:
,所以
同理
,两式相加得
证明8 以
为极点,
为极轴建立极坐标系,则
,设
,
,
则
,两式相加得